
BioMed CentralFilaria Journal

ss
Open AcceShort paper
Spatial variation of Anopheles-transmitted Wuchereria bancrofti and 
Plasmodium falciparum infection densities in Papua New Guinea
Neal D Alexander*1,2,3, Rana A Moyeed4, Phil J Hyun2,5, Zachary B Dimber2, 
Moses J Bockarie2, Julian Stander4, Bryan T Grenfell3, James W Kazura5 and 
Michael P Alpers2,6

Address: 1London School of Hygiene and Tropical Medicine, Infectious Disease Epidemiology Unit, Keppel Street, London WC1E 7HT, United 
Kingdom, 2Papua New Guinea Institute of Medical Research, PO Box 378, Madang, MP 511, Papua New Guinea, 3University of Cambridge, 
Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom, 4University of Plymouth, Department of Mathematics and 
Statistics, The University of Plymouth, Plymouth, PL4 8AA, United Kingdom, 5Case Western Reserve University, School of Medicine, 10900 Euclid 
Avenue, Cleveland, Ohio 44106-4945, United States of America and 6Centre for International Health, Curtin University of Technology, GPO Box 
U1987, Perth, WA 6845, Australia

Email: Neal D Alexander* - neal.alexander@lshtm.ac.uk; Rana A Moyeed - rmoyeed@plymouth.ac.uk; Phil J Hyun - maprik_2000@yahoo.com; 
Zachary B Dimber - sepik@pngimr.org.pg; Moses J Bockarie - mbockarie@datec.net.pg; Julian Stander - J.Stander@plymouth.ac.uk; 
Bryan T Grenfell - b.t.grenfell@zoo.cam.ac.uk; James W Kazura - jxk14@pop.cwru.edu; Michael P Alpers - M.Alpers@curtin.edu.au

* Corresponding author    

Abstract
The spatial variation of Wuchereria bancrofti and Plasmodium falciparum infection densities was
measured in a rural area of Papua New Guinea where they share anopheline vectors. The spatial
correlation of W. bancrofti was found to reduce by half over an estimated distance of 1.7 km, much
smaller than the 50 km grid used by the World Health Organization rapid mapping method. For P.
falciparum, negligible spatial correlation was found. After mass treatment with anti-filarial drugs,
there was negligible correlation between the changes in the densities of the two parasites.

Findings
Geolocation and remote sensing technologies are increas-
ingly being applied to the mapping and spatial analysis of
infectious diseases, including lymphatic filariasis [1] and
malaria [2]. For such maps to reflect the real pattern of
infection or disease, the sampling scale must be fine
enough to register its variation. Lymphatic filariasis and
malaria are both currently subject to renewed control pro-
grammes, and share anopheline vectors in some parts of
the world. Filariasis is being targeted for elimination, but
reduction in its infection intensity could conceivably, via
the removal of infection-induced vector mortality, lead to
more efficient transmission of malaria [3,4]. Accurate
mapping of the two infections can help monitor their con-
trol, including the detection of any unwanted interac-

tions. Here, we present spatial analysis of both parasites in
the same area of Papua New Guinea, using a recently
developed technique which estimates the scale of varia-
tion, taking into account the typically highly skewed dis-
tribution of parasite counts [5].

In a rural area of the East Sepik Province, cross-sectional
parasitological surveys were done of the population aged
over five years, as part of a trial of diethylcarbamazine
(DEC) plus ivermectin versus DEC alone against lym-
phatic filariasis [6]. Although, with regard to malaria, the
lower age threshold is a limitation, in the nearby Wosera
area, peak prevalence was not reached till after five years
[7]. Wuchereria bancrofti microfilariae were counted
microscopically on Nuclepore filters, through which 1 ml
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of night-collected blood had been passed. Asexual forms
of Plasmodium falciparum were counted per 200 white cells
from thick films. Anopheles mosquitoes, predominantly
Anopheles punctulatus s.s., are the vectors of filariasis in the
area [8].

Villages are divided into subunits, which we call hamlets,
distinguished by names in the local languages. These were
mapped with a hand-held Trimble Ensign Global Posi-
tioning System (GPS) machine. In the 1994 survey, imme-
diately before the first round of treatment, blood samples
were obtained from 2,219 people in 149 hamlets. Ham-
lets whose distance to their nearest neighbour was, due to
GPS inaccuracy, measured as less than 10 m were com-
bined with their nearest neighbour. There were two such
instances, so reducing the total number of hamlets to 147.

As described elsewhere [5], spatial structure in the infec-
tion densities was fitted by a negative binomial model.
The mean density is fitted as a log-linear function of age,
sex, and the hamlet mean. In turn, the hamlet means are
given a spatial structure, with closer hamlets being more
highly correlated. Specifically, hamlet i adds a 'hamlet
effect' ui to the logarithm of the mean density. When expo-
nentiated, these are similar to standardized mortality
ratios (SMRs) although relate to parasite densities rather
than death rates, so can be called standardized parasite
density ratios. These age- and sex-adjusted hamlet effect uil
have a covariance matrix (1/φ)exp(-dil/α), where dil is the
distance between hamlet i and l. The parameter α meas-
ures the scale of spatial correlation. More specifically,
αloge2 is the distance over which the correlation reduces
by half, which we call the 'half-distance'. The process can
also be thought of a smoothing process of the raw hamlet
means, adjusting for age and sex, and with a large spatial
scale (α) corresponding to a greater degree of smoothing.
The model was fitted by programs written in the C and
FORTRAN languages, and checked in terms of ability to
represent the spatial variability, and robustness to distri-
butional assumptions.

At the individual level, the mean pre-treatment microfila-
raemia density (including zeros) increased with age, till
reaching 1591 mf/ml in the 40–49 year age group, then
flattening out [9]. The mean P. falciparum density was 18
asexuals per 200 white cells in those aged 5–10 years,
decreasing to below 2 for ages over 30 years. At the hamlet
level, the median of the crude hamlet-specific pre-treat-
ment mean microfilarial densities was 552 mf/ml, range
0–4625. For P. falciparum, the median was 2.2 asexual par-
asites per 200 white cells, range 0–113. The figure shows
the spatial variation in the pre-treatment density of both
parasites in this area, estimated from the model, taking
into account age and sex effects, and spatial correlation.
W. bancrofti had an estimated half-distance of 1.7 km (α=

2.41, φ= 1.79). P. falciparum showed virtually no spatial
correlation, the half-distance being just 14 m (α= 0.0208,
φ= 1.13), around the resolution limit of the GPS.

Spatial variation of a) W. bancrofti and b) P. falciparum in parts of Urim and Urat census districts, East Sepik ProvinceFigure 1
Spatial variation of a) W. bancrofti and b) P. falciparum in parts 
of Urim and Urat census districts, East Sepik Province. The 
scale is in kilometres with an arbitrary origin near the centre 
of the study area (142.7°E, 3.6°S). Each hexagon represents 
one hamlet, with the shading showing the quartile of the 
standardized parasite density ratio. For W. bancrofti, the 0, 
25, 50, 75 and 100th percentiles are 0.27, 0.56, 1.02, 1.71 and 
4.3 respectively. For P. falciparum they are 0.43, 0.94, 1.27, 
1.80 and 11.64. The curve plotted against the vertical axis 
shows the rate at which correlation in mean parasite density 
decays with distance. The solid lines in the body of the map 
show unpaved roads, and the dashed line indicates the divi-
sion of villages between the two census districts.
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One year after the first round of mass treatment with anti-
filarial drugs (coverage 88%), all 14 randomized clusters
showed a reduction in Williams mean W. bancrofti den-
sity, ranging from 47 to 96%, mean 80% [6]. All 14 clus-
ters showed an increase in Williams mean P. falciparum,
the increases ranging from 2 to 255%, mean 91%. How-
ever, although DEC+ivermectin was more effective against
W. bancrofti, no tendency was seen for those clusters to
have larger increases in P. falciparum: in 3 of the 7 pairs the
DEC+ivermectin cluster had the larger increase, with 4
having the opposite tendency [3]. To further investigate
the possibility that this increase was due to the treatment,
the results of the spatial models were put into a hamlet-
level analysis: an 'ecological' analysis in epidemiological
terms. The difference in the post- and pre-treatment ham-
let effects was calculated for both filariasis and malaria,
and a linear relation tested using the Pearson correlation
coefficient. There was negligible correlation between the
changes in the densities of the two infections (r = 0.026, p
= 0.75).

The World Health Organization methodology of RAGFIL
(Rapid Assessment of the Geographical Distribution of
Bancroftian Filariasis) is based on a 50 × 50 km grid [10].
Gyapong et al. have compared this to a finer 25 km grid in
Ghana, with both leading to operationally similar conclu-
sions [11]. When extended to three other countries of
West Africa, the method showed filariasis to have an unex-
pectedly wide geographical distribution [1]. The current
results suggest that, at the opposite end of the spatial scale,
it may be possible for foci to persist within the interstices
of a 50 × 50 km grid, or even a 25 × 25 km one; a conclu-
sion similar to that reached by Srividya et al. in India [12].
However, the overall importance of any such effects will
also depend on the relative magnitudes of variation at dif-
ferent scales, which we are unable to measure beyond the
extent of our current study area. The need for accurate geo-
graphical monitoring may increase if the current elimina-
tion campaign reduces filariasis over a wide scale and
proceeds from an 'attack' to a 'consolidation' phase (to
borrow malaria eradication terminology).

Previous studies have found a very small scale of spatial
variation of malaria [13,14]. For example, Thompson et
al., found the risk of malaria varying by a factor of 6 over
500 m [15]. However, the scale of variation found in the
current study was still smaller than expected, with even
the closest hamlets showing little correlation. This is
despite malaria and filariasis sharing the same anopheline
vectors. The much smaller scale of variation of malaria is
probably related to its rapid variation over time. By com-
parison, the risk of acquiring W. bancrofti infection per
mosquito bite seems to be much smaller [16], but infec-
tions can last much longer. A single cross-sectional survey

therefore reflects a longer-term aggregate of filariasis expo-
sure history.

Our estimation of the hamlet effects can be seen as a
smoothing method, in which the degree of smoothing is
determined by the data. In this example, the west-east
trend in filariasis density was not easily discernible in the
raw data, while the low spatial correlation of malaria
meant that the smoothed map is similar to the crude one.
Any pattern presumably reflects spatial variation in factors
which affect the parasite, vector or host, but which are not
included in the model. In the current study, such factors
are likely to include those related to vector density, such
as distance to breeding sites, but this information is not
available for the whole study area, and the lack of pattern
in malaria infection suggests that other factors must also
be involved. We view the technique as potentially useful
in identifying such factors, as well as identifying 'hot
spots' of infection. Our method takes account of the
extreme skewness shown by most parasite distributions,
which can cause problems even at the exploratory stage of
analysis. For example, we found that using the common
log(x+1) transformation to plot the hamlet 'geometric
means' induced a spurious spatial correlation in malaria
infection.

Excess mosquito mortality caused by W. bancrofti would
make it feasible for filariasis control to enhance malaria
transmission. An 'ecological' analysis did not show such
an effect in this study, but monitoring should continue in
those areas where Anopheles are vectors of both infections.
For the elimination of filariasis, mapping at small as well
as large scales will be necessary, including urban areas,
especially as efforts proceed beyond the 'attack' phase.
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