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Abstract

Background: Diethylcarbamazine (DEC) has been used for many years in the treatment of human
lymphatic filariasis. Its mode of action is not well understood, but it is known to interact with the
arachidonic acid pathway. Here we have investigated the contribution of the nitric oxide and
cyclooxygenase (COX) pathways to the activity of DEC against B. malayi microfilariae in mice.

Methods: B. malayi microfilariae were injected intravenously into mice and parasitaemia was
measured 24 hours later. DEC was then administered to BALB/c mice with and without pre-
treatment with indomethacin or dexamethasone and the parasitaemia monitored. To investigate a
role for inducible nitric oxide in DEC's activity, DEC and ivermectin were administered to
microfilaraemic iINOS-- mice and their background strain (129/SV). Western blot analysis was used
to determine any effect of DEC on the production of COX and inducible nitric-oxide synthase
(iNOS) proteins.

Results: DEC administered alone to BALB/c mice resulted in a rapid and profound reduction in
circulating microfilariae within five minutes of treatment. Microfilarial levels began to recover after
24 hours and returned to near pre-treatment levels two weeks later, suggesting that the
sequestration of microfilariae occurs independently of parasite killing. Pre-treatment of animals
with dexamethasone or indomethacin reduced DEC's efficacy by almost 90% or 56%, respectively,
supporting a role for the arachidonic acid and cyclooxygenase pathways in vivo. Furthermore,
experiments showed that treatment with DEC results in a reduction in the amount of COX-I
protein in peritoneal exudate cells. Additionally, in iNOS-- mice infected with B. malayi microfilariae,
DEC showed no activity, whereas the efficacy of another antifilarial drug, ivermectin, was
unaffected.

Conclusion: These results confirm the important role of the arachidonic acid metabolic pathway
in DEC's mechanism of action in vivo and show that in addition to its effects on the 5-lipoxygenase
pathway, it targets the cyclooxygenase pathway and COX-1. Moreover, we show for the first time
that inducible nitric oxide is essential for the rapid sequestration of microfilariae by DEC.
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Background

Diethylcarbamazine citrate (DEC) has been used in the
treatment and control of lymphatic filariasis (caused by
the nematodes Wuchereria bancrofti, Brugia malayi and B.
timori) since 1947 and it continues to play an important
role, being one of the drugs used in the Global Pro-
gramme for the Elimination of Lymphatic Filariasis [1].
However, despite this long period of use, DEC's mode of
action is still poorly understood. Particularly intriguing is
the marked contrast between its rapid action in vivo and
the lack of significant activity in vitro. In vivo, the response
is rapid: within a few minutes of treatment, peripheral
blood microfilariae counts drop dramatically [2]. The
poor in vitro activity indicates that DEC probably requires
some host factor for its activity, and previous work has
highlighted the role of the innate immune system and leu-
cocytes independent of T cells and complement in the
activity of DEC [3,4].

DEC also has anti-inflammatory properties, as a result of
its interference with arachidonic acid metabolism [4]. The
products of the arachidonic acid metabolic pathway,
eicosanoids, have a number of biological effects, includ-
ing inhibition of platelet aggregation; regulation of leuco-
cyte activation and adherence; mediation of granulocyte
chemotaxis and degranulation; and promotion of vasodil-
atation [5]. It is well known that DEC inhibits enzymes of
the 5-lipoxygenase pathway, leukotriene synthases [6,7].
Additionally, in vitro, DEC blocks endothelial cell produc-
tion of the cyclooxygenase (COX) pathway products pros-
taglandin (PG) E,, prostacyclin (PGI,) and thromboxane
A, but has no effect on platelet prostanoid production [8].
In addition, the drug increases the rate and degree of
microfilariae adherence to granulocytes, with eosinophil
adhesion in particular being augmented [9-11]. Neverthe-
less, a role for some of these activities has yet to be dem-
onstrated in vivo and so we have used a mouse model to
identify the host factors responsible for the rapid efficacy
of DEC.

The arachidonic acid pathway includes lipoxygenase and
cyclooxygenase enzymes. The COX pathway has similari-
ties with the nitric oxide (NO) pathway, since both have
constitutive and inducible isoforms of their enzymes and
are key regulators of inflammatory responses [12,13]. The
COX and NO pathways are known to interact with each
other, with there being 'cross-talk' between NO/PGE, and
iNOS/COX which is generally stimulatory but may also be
inhibitory [14,15]. Therefore, we have used a combina-
tion of pharmacological inhibitors and gene-knockout
technology to elucidate the role of these two pathways in
DEC's activity in vivo.
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Materials and methods

Parasites and mice

Microfilariae of Brugia malayi were obtained from TRS
Laboratories (Georgia, USA), suspended in RPMI 1640
with 5% FCS, and 300000 parasites in a volume of 200 ul
were injected intravenously into mice. Systemic parasitae-
mia was allowed to equilibrate for 24 hours, then
heparinised blood samples were taken by tail bleeding
and parasitaemia was measured. Mice were allocated into
age- and size-matched groups and treated as described
below. All animals were kept in the Biological Services
Unit of the University of Liverpool in accordance with
Home Office regulations and were fed and watered ad libi-
tum. BALB/c mice were kept under standard conditions,
and the 129/SV and targeted knockout of the iNOS gene
(iNOS+, kindly provided by Prof. F.Y. Liew, University of
Glasgow) strains in filter-top cages.

Action of DEC against microfilariae in vivo in mice

Three BALB/c mice infected with B. malayi microfilariae
were treated with a single, oral dose of DEC 100 mg/kg [3]
(Sigma, U.K) in distilled water and the parasitaemia mon-
itored from five minutes to two weeks post treatment. To
investigate the role of the arachidonic acid metabolic
pathway in the mode of action of DEC, indomethacin (10
mg/kg in 1% ethanol), water-soluble dexamethasone (3
mg/kg in water, both obtained from Sigma, U.K.), or vehi-
cle was given by intra-peritoneal (i.p.) injection to micro-
filaraemic male BALB/c mice 30 minutes before oral DEC
administration (100 mg/kg, three mice per treatment
group). One animal was kept as an untreated control.
Heparinised blood samples were taken at intervals post
treatment for measurement of parasitaemia. Experiments
were repeated three times.

The requirement for inducible NO in DEC's efficacy was
determined in iNOS”/- mice. DEC (100 mg/kg) or vehicle
were administered orally to three female iNOS-/- mice or
their background strain, 129/SV. Mice were tail-bled at
regular intervals post-treatment for evaluation of parasi-
taemia. To test the efficacy of another anti-filarial drug,
ivermectin, in these mice, ivermectin phosphate (1 mg/kg
in 1% DMSO) was administered by i.p. injection. This
experiment was repeated three times.

Expression of COX-1, COX-2 and iNOS in DEC-exposed
peritoneal exudate cells

Male 129/SV and iNOS-/- mice were injected i.p. with 10
mg/kg DEC in endotoxin-free water or 100 ul of endo-
toxin-free water (three mice in each group). After 30 min-
utes, peritoneal exudate cells were collected in sterile PBS
with 1 g/L glucose, 1% bovine serum albumin and 1 U/ml
heparin. The cells were pelleted and lysed in 1 ml TRI rea-
gent (Sigma, U.K.) then protein extracted according to the
supplied protocol.
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For Western blot analysis, 10 ug of each protein were sep-
arated on a 7.5 % denaturing SDS polyacrylamide gel and
blotted on to 0.45 uM pore size PVDF membrane (Immo-
bilon P, Micropore, U.K.). After blocking overnight at 4°C
in block buffer (1% casein in PBS/0.1% Tween) and wash-
ing in PBS/0.1% Tween, membranes were incubated for 1
hour in rabbit anti-mouse COX-1, COX-2 or iNOS poly-
clonal IgG (Cayman Chemical Co., Alexis Corporation,
U.K.) diluted to 1 in 5000 in block buffer. The anti-COX
antibodies showed no cross-reactivity with the opposite
isoform, whilst the anti-iNOS antibody showed only 5%
cross-reactivity against nNOS and none against eNOS.
Membranes were then washed and incubated for 1 hour
in goat anti-rabbit IgG conjugated to horse radish peroxi-
dase (Nordic, The Netherlands) diluted to between 1 in
20000 and 1 in 100000, depending on the primary anti-
body, followed by further washing. The electrochemilu-
minescent reagent SuperSignal West (Pierce Perbio, U.K.)
was used to visualise the bands on X-ray films.

Statistical analysis

Parasitaemia data were expressed as mean percentage of
pretreatment microfilariae or as a percentage of untreated
control microfilaraemias per 100 pl of blood and were
analysed by the two-tailed Student's t-test. P values of <
0.05 were considered to be significant.

Results

Action of DEC against microfilariae in vivo in mice

In BALB/c mice treated with DEC alone, microfilaraemia
levels were reduced by five minutes with a sustained
reduction for at least 60 minutes post-treatment (Fig. 1).
However, by 24 hours after treatment, microfilarial levels
had partially recovered and two weeks later they had
returned to levels approaching those pre-treatment (Fig.
1). Subsequent experiments focused on the rapid activity
of DEC over the first one to two hours. Neither vehicle,
indomethacin nor dexamethasone by itself had any effect
on microfilaraemia in BALB/c mice (data not shown).
However, in mice pre-treated with indomethacin or dex-
amethasone, microfilaraemias were reduced by only 11%
(dexamethasone) or 44% (indomethacin) of untreated
controls at 60 minutes post DEC administration (Fig. 2).
The differences from the DEC-only group were statistically
significant for all time points for indomethacin (P <
0.004) and for 15 and 30 minutes post-treatment for dex-
amethasone (P < 0.017) pre-treatments.

DEC administration also rapidly reduced microfilarae-
mias in 129/SV mice but, in contrast, had no effect on
microfilariae levels in iNOS-/- mice, in which microfilarae-
mia was maintained at pre-treatment levels for at least 2
hours (Fig. 3a), with no significant differences from
untreated iNOS+- controls (P > 0.887 for all time points).
In contrast, ivermectin was effective in both 129/SV and
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iNOS/- mice (Fig. 3b), although it had a slower onset of
action than DEC. However, by 24 hours no microfilariae
were detected in either strain of mouse given ivermectin.

Expression of COX-1, COX-2 and iNOS in DEC-exposed
peritoneal exudate cells

Thirty minutes after administration of endotoxin-free
water to 129/SV and iNOS--mice, peritoneal exudate cells
were expressing COX-1 protein, whereas those from DEC-
exposed animals contained markedly less COX-1 (Fig. 4).
Interestingly, there seemed to be a higher level of COX-1
remaining in the iNOS/- than the 129/SV macrophages
after DEC treatment. Neither COX-2 nor iNOS protein
was detected in any of the 129/SV or iNOS-/- groups (not
shown).

Discussion

Here we have used a murine model to elucidate the proc-
esses within the mammalian host that contribute to DEC's
rapid in vivo action. The involvement of two interacting
pathways, the cyclooxygenase and inducible nitric oxide
pathways, were shown to mediate the activity of DEC in
vivo.

Treatment of mice with DEC resulted in a rapid reduction
in microfilaraemia. This reduction, however, was tran-
sient and microfilaraemia began to recover 24 hours after
treatment, with almost full restoration to pre-treatment
levels two weeks after treatment. This has been previously
observed in other models [16,17] and suggests that the
disappearance of the microfilariae from the peripheral cir-
culation and their sequestration in the central vascular
system occur independently of parasite killing. A pro-
longed course of DEC treatment of B. malayi-infected mice
led to sustained reductions in circulating microfilariae for
at least 30 days [18].

Our results confirm previous findings showing that an
important target for DEC is the arachidonic acid meta-
bolic pathway. Inhibition at the first stage in the pathway
by dexamethasone, which inhibits phospholipase A2,
almost completely abolished the activity of DEC, whereas
inhibition of the cyclooxygenase enzymes COX-1 and
COX-2 by indomethacin reduced its efficacy by 56%, indi-
cating that in addition to its well documented inhibition
of the 5-lipoxygenase pathway [6,7], DEC acts on the
cyclooxygenase pathway. We have shown that at least one
way it does this in vivo is by the loss of COX-1 protein
within 30 minutes of administration.

The lack of activity of DEC in mice deficient in iNOS iden-
tifies a novel enzyme system involved in the in vivo activity
of DEC. Previously we have shown that B. malayi micro-
filariae are susceptible to nitric oxide in vitro [19]. How-
ever, we found no evidence that DEC itself up-regulated
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DEC causes rapid sequestration of B. malayi microfilariae in BALB/c mice. BALB/c mice intravenously injected with
B. malayi microfilariae were dosed orally with 100 mg/kg DEC and microfilaraemia monitored from 5 to 60 minutes post treat-

ment, then at 24 hours and two weeks.

iNOS activity either in vitro (not shown) or in vivo, in
agreement with Rajan et al. [20], who did not find any
induction of NO release from murine macrophages or rat
endothelial cells treated with DEC. It therefore seems
probable that iNOS exerts an effect on DEC activity via its
interaction with cyclooxygenases, an idea supported by
the reduced loss of COX-1 protein in peritoneal exudate
cells derived from iNOS”/- mice. Several studies have
shown that NO and iNOS interact with COX enzymes to
cause an increase in enzymatic activity [21] and conse-
quently increased prostaglandin synthesis [22-25],
although large amounts of endogenous NO inhibited
COX expression and activity in murine macrophages [26].
One explanation of the differential effects of NO on COX
activity may relate to effects on different COX isoforms.
For example, NO can activate COX-1 in fibroblasts but
inhibit COX-2 in the same cell [15]. Although our studies

do not distinguish between the role of COX-1 and COX-2
in DEC's activity, the rapid activity of DEC sequestration
and the depletion of COX-1 protein suggest a role for
COX-1. COX-1 but not COX-2 is essential for the early
production of prostaglandins from macrophages and
mast cells [27,28]. Further studies on mice deficient in
COX isoforms or the use of isoform-specific pharmaco-
logical inhibitors could address this question. Several pol-
ymorphisms in the human iNOS gene have been
described that are associated with a variety of diseases,
including malaria [29-31] and hypertension [32]; it
would be interesting to know if these or other polymor-
phisms affected responsiveness to DEC therapy.

Our findings could help expand our understanding of the
mechanisms involved in the cellular processes leading to
sequestration and the subsequent killing of parasites. In
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Figure 2

Indomethacin or dexamethasone pre-treatment reduces efficacy of DEC in BALB/c mice infected with B.
malayi microfilariae. Indomethacin (10 mg/kg), dexamethasone (3 mg/kg) or vehicle was administered 30 minutes before
oral dosing with DEC (100 mg/kg). Symbols are means of three mice for the DEC plus dexamethasone group (triangles), seven
mice for the DEC plus indomethacin group (white circles) and four mice for the DEC-only group (black circles). Significantly
different results from the DEC-only group are denoted by * (P < 0.017), ** (P = 0.001) or *** (P = 0.000).

addition to the elevation of granulocyte adherence, plate-
lets have also been shown to bind to and kill microfilariae
[33]. In view of the well know effects of NO and prostag-
landins on platelet function and evidence to suggest the
presence of inducible NO in human platelets [34,35], the
role of platelets in parasite sequestration and killing
should be re-evaluated in vivo.

Filarial parasites also produce and release prostanoids,
including PGE,, PGI, and PGD, [36-41], which result in
inhibition of platelet aggregation [40], vasodilatation of
the blood vessels and immune suppression, and may con-
tribute to the long persistence of these parasites in their

natural hosts [41]. This prostanoid production is also
inhibited by DEC [8]. Significantly, they do not produce
thromboxane A, [36]. In contrast to mammalian systems,
in which eicosanoid formation is often in response to ago-
nist-induced stimulation, microfilariae produce prosta-
noids constitutively [36], but the mechanisms by which
they do so have not yet been described in detail, although
a glutathione S-transferase of O. volvulus synthesizes PGD,
from PGH, [39]. It is not clear if DEC acts predominantly
against the prostanoids of the worm or of the host. The
lack of any direct effect of dexamethasone and indometh-
acin on microfilaraemia suggests that these drugs either
do not influence parasite prostaglandins in vivo or that if
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Figure 3

DEC is ineffective against B. malayi microfilariae in the absence of iINOS. Efficacy of (a) a single, oral dose of DEC
(100 mg/kg) or (b) a single, i.p. dose of ivermectin phosphate (I mg/kg) in 129/SV and iINOS-- mice infected with B. malayi
microfilariae. Black symbols represent 129/SV mice, white symbols iNOS--. Squares indicate DEC administration, triangles iver-
mectin administration and circles untreated controls. Symbols represent mean results from at least three or four mice, except
in the case of those treated with ivermectin (two animals) from two combined experiments which were representative of a
further repeat. Significantly different microfilaraemias between 129/SV and iNOS-- mice after DEC administration are denoted
by * (P = 0.001) or ** (P = 0.000).
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INOS-/-

Control DEC

Western blot detection of COX-1 protein from peritoneal exudate cells. COX-| protein was detected in 129/SV
and iINOS-- peritoneal exudate cells thirty minutes after i.p. injection of endotoxin-free water (control) or DEC (10 mg/kg).
Proteins (10 ug) were separated on a 7.5% denaturing SDS polyacrylamide gel, transferred to PYDF membrane, incubated with
rabbit anti-mouse COX-1, then goat anti-rabbit IgG-horse radish peroxidase conjugate and detected by chemiluminescence.

they do, they are not involved in DEC-mediated seques-
tration. Further studies that involve inhibition of the key
parasite enzymes would be required to determine the role
of parasite-derived prostanoids in DEC activity. Recent
studies have reported a direct activity of DEC against
Wouchereria bancrofti microfilariae that results in exsheath-
ment, organelle damage and cytolysis [42], which occur
both in vitro and in vivo and suggest that DEC may have a
direct effect on worms in addition to its interaction with
host-derived pathways as reported here.

Much remains to be discovered of the mode of action of
DEC. What mechanisms lead to parasite killing following
sequestration in the central vasculature; and how does
this relate to the paradoxical appearance of microfilariae
in the peripheral circulation following the 'DEC provoca-
tive test'? What is the role of host immunity and effects on
adult worms in the long-term efficacy of DEC? This model
should be a powerful tool to address these questions and
others to further unravel the mysteries of this elusive drug.
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Conclusion

Inducible nitric oxide synthase and the cyclooxygenase
pathway were found to be essential for DEC's activity in
vivo. Along with its well-documented activity on the lipox-
ygenase pathway, DEC administered in vivo reduced the
amount of the host's COX-1. Further elucidation of DEC's
mechanism of action with this murine model could pro-
vide a clearer understanding of the interaction of the nitric
oxide and cyclooxygenase pathways and the cellular and
molecular events at the site of sequestration.

List of abbreviations

DEC, diethylcarbamazine citrate; COX, cyclooxygenase;
i.p., intra-peritoneal; PG, prostaglandin; PGI,, prostacyc-
lin; NO, nitric oxide; iNOS, inducible nitric-oxide
synthase.
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