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Abstract
Sixty-four experts from a variety of disciplines attended a Conference on the Eradicability of Onchocerciasis at The
Carter Center, in Atlanta GA, held January 22-24, 2002. The Conference, which was organized by The Carter Center
and the World Health Organization, with funding from the Bill & Melinda Gates Foundation, addressed the question:
"Is onchocerciasis (River Blindness) eradicable with current knowledge and tools?" Former US President Jimmy Carter
attended part of the final plenary proceedings on January 24.

The Conference consisted of a series of presentations by invited expert speakers (Appendix C) and further
deliberations in four workgroups (Appendix D) followed by plenary discussion of major conclusions. The
presentations underlined epidemiological and entomological differences between onchocerciasis in Africa and the
Americas. Whilst onchocerciasis in Africa covers extensive areas and is associated with striking human and fly
population migrations and remarkably efficient black fly vectors, in the Americas onchocerciasis is found in limited foci.
Human and fly population migration are not major problems in the Americas, where most black fly species are
inefficient, though some efficient black flies are also found there. Vector control has been effectively applied in the
Onchocerciasis Control Program in West Africa (OCP) with remarkable results, interrupting transmission in most
parts of the original Program area. The use of ivermectin has given variable results: while ivermectin treatment has
been effective in all endemic areas in controlling onchocerciasis as a public health problem, its potential for interrupting
transmission is more promising in hypo- and mesoendemic areas. The African Program for Onchocerciasis Control
(APOC), which supports onchocerciasis control in endemic African countries outside the OCP, applies ivermectin, 
its principal control tool, to communities in high-risk areas as determined by rapid epidemiological mapping of
onchocerciasis (REMO) and Geographic Information Systems (GIS). In the Americas, through support of the
Onchocerciasis Elimination Program in the Americas (OEPA), a strategy of bi-annual ivermectin treatment of at least
85% of the eligible populations in all endemic communities is showing very good results and promises to be effective
in eliminating onchocerciasis in the region.The Conference concluded that onchocerciasis is not eradicable using
current tools due to the major barriers to eradication in Africa. However, the Conference also concluded that in most
if not all the Americas, and possibly Yemen and some sites in Africa, transmission of onchocerciasis can be eliminated
using current tools. The Conference recommended that where interruption of transmission is feasible and
cost effective, programs should aim for that goal using all appropriate and available interventions so that the
Onchocerca volvulus can eventually be eliminated and interventions halted. Although interruption of transmission of
onchocerciasis cannot currently be achieved in most of Africa, the Conference recommended that efforts be made to
preserve areas in West Africa made free of onchocerciasis transmission through the Onchocerciasis Control Program
over the past 25 years. In the remaining hyper and mesoendemic foci in Africa, continued annual distribution of
ivermectin will keep onchocerciasis controlled to a point where it is no longer a public health problem or constraint
to economic development.

Published: 7 February 2003

Filaria Journal 2003, 2:2

Received: 5 February 2003
Accepted: 7 February 2003

This article is available from: http://www.filariajournal.com/content/2/1/2

© 2003 Dadzie et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all 
media for any purpose, provided this notice is preserved along with the article's original URL.



of the

FINAL REPORT

Conference on the Eradicability

of

Onchocerciasis
 
 
 
  
 

Rapporteur
Dr. Yankum Dadzie

 
Co-Chairs

Dr. Donald R. Hopkins, The Carter Center
Dr. Maria Neira, The World Health Organization

 
 

 
 

The Carter Center
Cecil B. Day Chapel

Atlanta, Georgia, USA
January 22-24, 2002 “Sightless Among Miracles” by R.T. Wallen

supported by



FINAL REPORT

of the

Conference on the Eradicability

of

Onchocerciasis

Rapporteur
Dr. Yankum Dadzie

Co-Chairs
Dr. Donald R. Hopkins, The Carter Center

Dr. Maria Neira, The World Health Organization

The Carter Center
Cecil B. Day Chapel

Atlanta, Georgia, USA
January 22-24, 2002



ii

TABLE OF CONTENTS

Acknowledgements                                                                                                    iii

Acronyms                                                                                                                    iv

Executive Summary                                                                                                   1
French                                                                                                    3
Spanish                                                                                                    5

Conference Organization and Opening Remarks                                                      7

Introduction                                                                                                                 8

Summary of Discussions
African Perspective                                                                                          10

American Perspective                                                                                      12

Modeling of Onchocerciasis Control                                                               13

Ivermectin Resistance                                                                                     14

Sustainability of Ivermectin Delivery                                                               14

Loa loa as an Obstacle to Control or Eradication of Onchocerciasis             15

Human Migration, and Political and Social Aspects of Eradication                15

Economic Aspects of Eradicating Onchocerciasis                                          16

Conclusions and Recommendations
Key Conclusions and Recommendations                                                       17

Other Selected Conclusions and Recommendations from Working Groups  17

Appendices
A. Agenda                                                                                                  21

B. List of Participants with Group Photo                                                   26

C. Papers submitted by Conference Speakers                                        35

D. Working Group Presentations                                                              122



iii

ACKNOWLEDGEMENTS

We would like to thank the Steering Committee: David Addiss, Bruce Benton, Donald Hopkins,
Marc Karam, Stefanie Meredith, Frank Richards, and Alfred Saah.

We would also like to thank the speakers for sharing their knowledge.

In addition, we would like to thank Carter Center and World Travel staff for their invaluable
assistance in managing the logistical details, especially Tracey Adams, Rachel Barwick, Emily
Howard, Nicole Kruse, Martha Lucas, Wanjira Mathai, Robin Poovey, Lindsay Rakers, Shandal
Sullivan, and Eric Thompson.

We would also like to thank the following individuals for their help in assisting Drs. Dadzie,
Hopkins and Neira edit and finalize the proceedings of the conference: Rachel Barwick, Wanjira
Mathai, Lindsay Rakers, Frank Richards, and Shandal Sullivan.

Finally, we would like to thank the Bill & Melinda Gates Foundation for their generous support
in realizing this conference and the World Health Organization for the support of their staff.



iv

ACRONYMS

ABR Annual Biting Rate
AFRO Regional Office for Africa (WHO)
APOC African Program for Onchocerciasis Control (WHO)
ATP Annual Transmission Potential
BSE Bovine spongiform encephalopathy
CAR Central African Republic
CBM Christoffel Blindenmission
CBTI Community-Based Treatment with Ivermectin
CD Community Distributor
CDC Centers for Disease Control and Prevention
CDD Community Directed Distributors
CDHW Community-Directed Health Workers
CDTI Community-Directed Treatment with Ivermectin
CMFL Community Microfilarial Load
CNS Central Nervous System
CPE Department of Control, Prevention and Eradication (WHO)
DEC diethylcarbamazine
DNA deoxyribonucleic acid
DRC Democratic Republic of Congo
EAC Expert Advisory committee
ELISA Enzyme Linked Immunosorbent Assay
FMD Foot and Mouth Disease
GDP Gross Domestic Product
GIS Geographic Information Systems
HTS High Throughput Screening
IACO InterAmerican Conference on Onchoceriasis
ICT Immuno-Chromatographic Antibody Card Test
IDB InterAmerican Development Bank
IDP Internally Displaced Person or Ivermectin Distribution Program
IEC Information, Education and Communication
IRD Institut de Recherche pour le Developpement
ITFDE International Task Force for Disease Eradication
IVM Ivermectin
IVR Ivermectin
L3 Third Stage Larvae
L4 Fourth Stage Larvae
LCIF Lions Clubs International Foundation
LF Lymphatic filariasis
MDA Mass Drug Administration
MDP Mectizan® Donation Program
MEC Mectizan® Expert Committee
Mectizan® Ivermectin (Merck & Co. product name)
mf/MF/Mf Microfilaria
MfAC Microfilaria in the Anterior Chamber



v

MOH Ministry of Health
MOX Moxidectin
MSF Medicins sans frontieres
MSU Michigan State University
NGDO Non-Governmental Development Organization
NGO Non-Governmental Organization
NR Nuclear Receptor
OCP Onchocerciasis Control Program
OCRC Onchocerciasis Chemotherapy Research Center
OEPA Onchocerciasis Elimination Program of the Americas
PAHO Pan American Health Organization
PCR Polymerase Chain Reaction
PHC Primary Healthcare
PK Punctate Keratitis
R&D Research & Development
RAPLOA Rapid Assessment for Loa
REA Rapid Epidemiological Assessment
REMO Rapid Epidemiological Mapping of Onchocerciasis
SAE Serious Adverse Effect
TCC Technical Consultative Committee (APOC)
TDR Special Program for Research and Training in Tropical Diseases (WHO)
tRNA Transfer Ribonucleic Acid
UAB University of Alabama at Birmingham
ug/kg Microgram per kilogram
UTG(2) twice the Ultimate Treatment Goal
WHO World Health Organization



1

Executive Summary

Sixty-four experts from a variety of disciplines attended a Conference on the Eradicability of
Onchocerciasis at The Carter Center, in Atlanta GA, held January 22-24, 2002.  The Conference,
which was organized by The Carter Center and the World Health Organization, with funding
from the Bill & Melinda Gates Foundation, addressed the question: ‘Is onchocerciasis (River
Blindness) eradicable with current knowledge and tools?’  The Conference consisted of a series
of presentations by invited expert speakers (Appendix C) and further deliberations in four
workgroups (Appendix D) followed by plenary discussion of major conclusions.  Former US
President Jimmy Carter attended part of the final plenary proceedings on January 24.

The presentations underlined epidemiological and entomological differences between
onchocerciasis in Africa and the Americas. Whilst onchocerciasis in Africa covers extensive
areas and is associated with striking human and fly population migrations and remarkably
efficient black fly vectors, in the Americas onchocerciasis is found in limited foci. Human and
fly population migration are not major problems in the Americas, where most black fly species
are inefficient, though some efficient black flies are also found there. Vector control has been
effectively applied in the Onchocerciasis Control Program in West Africa (OCP) with
remarkable results, interrupting transmission in most parts of the original Program area. The use
of ivermectin has given variable results: while ivermectin treatment has been effective in all
endemic areas in controlling onchocerciasis as a public health problem, its potential for
interrupting transmission is more promising in hypo- and mesoendemic areas. The African
Program for Onchocerciasis Control (APOC), which supports onchocerciasis control in endemic
African countries outside the OCP, applies ivermectin--its principal control tool--to communities
in high-risk areas as determined by rapid epidemiological mapping of onchocerciasis (REMO)
and Geographic Information Systems (GIS).  In the Americas, through support of the
Onchocerciasis Elimination Program in the Americas (OEPA), a strategy of bi-annual ivermectin
treatment of at least 85% of the eligible populations in all endemic communities is showing very
good results and promises to be effective in eliminating onchocerciasis in the region.

The Conference concluded that onchocerciasis is not eradicable using current tools due to the
major barriers to eradication in Africa.  However, the Conference also concluded that in most if
not all the Americas, and possibly Yemen and some sites in Africa, transmission of
onchocerciasis can be eliminated using current tools.

The Conference recommended that where interruption of transmission is feasible and cost-
effective, programs should aim for that goal using all appropriate and available interventions so
that the Onchocerca volvulus can eventually be eliminated and interventions halted.  Although
interruption of transmission of onchocerciasis cannot currently be achieved in most of Africa, the
Conference recommended that efforts be made to preserve areas in West Africa made free of
onchocerciasis transmission through the Onchocerciasis Control Program over the past 25 years.
In the remaining hyper and mesoendemic foci in Africa, continued annual distribution of
ivermectin will keep onchocerciasis controlled to a point where it is no longer a public health
problem or constraint to economic development.
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Although not yet identified to exist, the specter of the emergence of resistance to ivermectin in
O. volvulus was considered a future potential threat to the great progress and considerable
investment made so far in research and control against this disease.  In particular, there is need
for additional research in developing macrofilaricides (drugs which could kill or permanently
sterilize the adult O. volvulus parasite), tools for ivermectin resistance monitoring, and improved
diagnostics.
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Résumé analytique

Soixante quatre experts appartenant à diverses disciplines sont venus assister à une Conférence
sur l’éradication de l’onchocercose au Centre Carter à Atlanta GA, tenue du 22 au 24 janvier
2002. La conférence qui était organisées par le Centre Carter et l’Organisation mondiale de la
Santé, grâce à un financement de la Fondation Bill & Melinda Gates se penchait sur la question
suivante : Est-il possible d’éliminer l’onchocercose (cécité des rivières) avec les connaissances et
les outils actuels ? » La Conférence consistait en une série de présentations de la part d’orateurs
invités (Annexe C) et de délibérations dans quatre groupes de travail (Annexe D) suivies d’une
discussion en plénière des grandes conclusions. L’ancien Président américain, M. Jimmy Carter
a assisté à une partie des débats de la plénière.

Les communications ont mis en exergue les différences épidémiologiques et entomologiques
entre l’onchocercose en Afrique et aux Amériques. Si l’onchocercose en Afrique couvre de
vastes étendues et si elle associée aux attaques contre les humains et aux migrations de
populations de mouches et aux vecteurs de la mouche noire, extrêmement actives, par contre aux
Amériques, l’onchocercose est confinée à des foyers restreints. Les migrations des populations
humaines et de mouches ne sont pas des problèmes importants aux Amériques où la plupart des
espèces de mouches noires ne sont pas actives bien qu’il en existe également certaines qui sont
actives sur ce continent. La lutte contre le vecteur a été appliquée efficacement dans le cadre du
Programme de lutte contre l’onchocercose en Afrique de l’Ouest (OCP) obtenant des résultats
remarquables et mettant fin à la transmission dans la plupart de la région initiale couverte par le
programme. L’emploi de l’ivermectine a obtenu des résultats variables : le traitement à base
d’ivermectine a été efficace dans les régions à caractère endémique pour lutter contre
l’onchocercose en tant que problème de santé publique mais son potentiel pour interrompre la
transmission est plus prometteur dans les régions à caractère hypo-endémique et méso-
endémique. Le Programme africain de lutte contre l’onchocercose (APOC) qui soutient la lutte
contre la maladie dans des pays africains endémiques à l’extérieur du PLO applique
l’ivermectine – son principal outil de lutte- dans les communautés des régions à risque élevé tel
que déterminé par une cartographie épidémiologique rapide de l’onchocercose (REMO) et les
systèmes d’informations géographiques (GIS). Aux Amériques, grâce au Programme
d’élimination de l’onchocercose dans les Amériques (OEPA), une stratégie de traitement
bisannuelle à base d’ivermectine couvrant au moins 85% des populations concernées dans toutes
les communautés à caractère d’ivermectine enregistre de très bons résultats et a toutes les
chances d’être efficace pour éliminer l’onchocercose dans la région.

La Conférence a conclu que l’onchocercose ne pouvait pas être éliminée en utilisant les outils
actuels à cause des grandes barrières qui entravent l’éradication en Afrique. Néanmoins, la
Conférence a également conclu que dans l’ensemble voire partout aux Amériques et
probablement au Yémen et dans certains endroits en Afrique, la transmission de l’onchocercose
pouvait être enrayée en utilisant les outils actuels.

La Conférence a recommandé que dans les endroits où il était faisable et efficace par rapport aux
coûts de mettre fin à la transmission, les programmes devaient viser ce but en utilisant toutes les
interventions adéquates et disponibles de sorte à éliminer Onchocerca volvulus et à mettre fin à
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la transmission. Même si l’interruption de la transmission de l’onchocercose n’est pas possible
actuellement dans la plupart des pays de l’Afrique, la Conférence a recommandé de préserver les
régions de l’Afrique de l’Ouest qui se sont débarrassées de l’onchocercose ces 25 dernières
années grâce au Programme de lutte contre l’onchocercose. Dans les foyers africains restants, à
caractère hyper-endémique et méso-endémique, une distribution annuelle continue d’ivermectine
permettra de garder l’onchocercose sous contrôle au point où la maladie n’est plus un problème
de santé publique ou une contrainte au développement économique.

Bien que son existence n’ait pas encore été vérifiée, le spectre de l’éventuelle résistance à
l’ivermectine chez O.volvulus a été jugé un risque possible pour les progrès importants et
l’investissement considérable fait dans la recherche et la lutte contre cette maladie. Il s’agit
notamment de faire des recherches supplémentaires pour mettre au point des macrofilaricides
(médicaments qui tuent ou stérilisent de manière permanente le parasite adulte O.volvulus), des
outils pour le suivi de la résistance à l’ivermectine et pour améliorer le diagnostic.
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Resumen de conclusiones

Sesenta y seis expertos en diversos campos asistieron a una Conferencia sobre la Posibilidad de
Erradicación de la Oncocercosis, celebrada en el Carter Center, de Atlanta, GA, durante el 22 y
el 24 de enero de  2002.  La Conferencia, organizada por el Carter Center y la Organización
Mundial de la Salud y patrocinada por la Bill & Melinda Gates Foundation, planteó el
interrogante siguiente: ‘¿Es erradicable la oncocercosis (o ceguera de los ríos) con los
conocimientos y medios de que disponemos?’  La Conferencia consistió en una serie de
presentaciones realizadas por expertos invitados (Apéndice C) y las deliberaciones posteriores de
cuatro grupos de trabajo (Apéndice D), seguida de la discusión plenaria sobre las principales
conclusiones.  El expresidente estadounidense Jimmy Carter asistió a algunas de las reuniones
plenarias finales celebradas el 24 de enero.

Las presentaciones subrayaron las diferencias epidemiológicas y entomológicas que existen entre
la oncocercosis en África y América. Mientras la enfermedad en África está presente en vastas
zonas y está asociada con sorprendentes migraciones de poblaciones humanas y de moscas y con
muy eficientes vectores (moscas negras), en las Américas, la oncocercosis se encuentra en focos
muy limitados. Migraciones humanas y de moscas no representan mayor problema en las
Américas, donde la mayoría de las especies de moscas negras son vectores ineficientes, aunque
también existen algunas especies eficientes. El Programa de Control de la Oncocercosis en
África Occidental (OCP) ha aplicado con eficacia el control vectorial obteniendo óptimos
resultados al  interrumpir la transmisión en la mayoría de las zonas originales del programa. El
uso de ivermectina ha demostrado resultados variables: mientras el tratamiento con ivermectina
ha sido efectivo en todas las zonas endémicas al controlar la oncocercosis como problema de
salud pública, su potencial para interrumpir la transmisión es más promisorio en áreas hipo y
mesoendémicas. El Programa Africano de Control de la Oncocercosis (APOC), el cual apoya el
control de la oncocercosis en países africanos endémicos que no pertenecen al programa OCP,
utiliza ivermectina como su principal herramienta de control en comunidades de alto riesgo
determinadas por medio de Mapeo Epidemiológico Rápido de la oncocercosis (REMO) y los
Sistemas de Información Geográfica (SIG).  En las Américas, a través del apoyo del Programa
para la Eliminación de la Oncocercosis en las Américas (OEPA), la estrategia de tratamiento
semestral con ivermectina a por lo menos el 85% de la población elegible en todas las
comunidades endémicas, está demostrando excelentes resultados y promete ser efectiva en la
eliminación de la oncocercosis en la región.

La Conferencia llegó a la conclusión de que la oncocercosis no es erradicable usando las
herramientas existentes actualmente debido a las grandes dificultades presentes para la
erradicación en África.  Sin embargo, la conferencia también concluyó que en la mayoría, si no
en todas las Américas, y posiblemente Yemen y en algunos lugares de África, la transmisión de
la enfermedad puede ser eliminada usando las herramientas actuales.

La Conferencia recomendó que cuando la interrupción de la transmisión sea posible y
económicamente viable, los programas deben esforzarse por lograrla utilizando todos los
procedimientos adecuados y disponibles, con el fin de que la Onchocerca volvulus pueda ser
eventualmente eliminada y suspendidas las intervenciones.  Aunque la interrupción de la
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transmisión de la oncocercosis no puede ser actualmente lograda en la mayoría del África, la
Conferencia recomendó que se hicieran los esfuerzos necesarios para preservar las áreas de
África Occidental en las que se ha logrado eliminar la transmisión de la oncocercosis a través del
Programa de Control de Oncocercosis los últimos 25 años.  En los restantes focos hiper y
mesoendémicos en África, la distribución anual constante de ivermectina mantendrá la
oncocercosis bajo control hasta que deje de ser un problema de salud pública y un obstáculo para
el desarrollo económico.

Aunque no se ha confirmado su existencia, el espectro del aparecimiento de resistencia a la
ivermectina en O. volvulus fue considerado como una posible amenaza futura para el progreso
alcanzado y las importantes inversiones a la fecha realizadas para la investigación y control de
esta enfermedad.  En particular, existe una necesidad adicional de investigación para desarrollar
macrofilaricidas (fármacos capaces de eliminar o esterilizar de manera definitiva al parásito O.
volvulus adulto),  herramientas para el monitoreo del aparecimiento de resistencia a la
ivermectina y mejoras en los métodos de diagnóstico.
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Conference Organization and Opening Remarks

The Conference on the Eradicability of Onchocerciasis was convened by The Carter Center and
WHO and supported by the Bill and Melinda Gates Foundation from 22–24 January 2002 at The
Carter Center in Atlanta, Georgia. Over 64 experts from a variety of disciplines attended and
examined the theme “Is onchocerciasis (River Blindness) eradicable with current knowledge and
tools?” Presentations were made by invited expert speakers (Appendix C) and four working
groups deliberated on assigned topics (Appendix D). Conclusions and recommendations from the
working group deliberations were discussed in plenary to formulate the main conference
conclusions. Former President Carter participated in part of the plenary session on January 24.

The conference was co-chaired by Dr. Donald Hopkins, Associate Executive Director, The
Carter Center and Dr. Maria Neira, Director, Control, Prevention and Eradication,
Communicable Diseases Cluster, World Health Organization. Dr. Yankum Dadzie was
appointed rapporteur.  In his opening address, Dr. Hopkins urged conference participants to
critically review available knowledge and evidence on the theme in order to make an informed
judgment on whether or not onchocerciasis is eradicable with current knowledge and tools and to
make recommendations on which actions need to be taken in the future. Dr. Maria Neira, in her
remarks, stressed the importance of considering the cost complications of any recommendations
made by the conference and to make sure that these were consistent with the broader public
health agenda.
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Introduction

Onchocerciasis, or river blindness, is caused by the filarial parasite Onchocerca volvulus. It is
transmitted by the black flies of the genus Simulium that breed in fast-flowing water.
Manifestations of onchocerciasis include eye lesions that can cause visual loss culminating in
blindness, and skin lesions (severe itching, disfiguring skin changes, and subcutaneous nodules).
A WHO Expert Committee in 19951 estimated that over 120 million persons are at risk with
some 17.6 million infected, 99 % of whom live in Africa with the rest found in six countries of
the Americas, and Yemen in the Arabian Peninsula.  Onchocerciasis is a disease of remote, rural,
poor populations. In Africa, onchocerciasis has been found to cause serious socio-economic
problems; populations have in the past abandoned fertile land along the rivers that harbor the
breeding sites of the Simulium, for fear of going blind, whilst persons with unsightly skin lesions
have been socially marginalized.

Progress made in the last quarter century in the control of onchocerciasis, both in Africa and the
Americas, has generated much interest and also raised questions about the feasibility of
eradicating onchocerciasis using available tools. The Atlanta Conference on the Eradicability of
Onchocerciasis was convened with the following purposes:  1) to review previous discussions
and judgments on the eradication of onchocerciasis, 2) to discuss and evaluate the current
knowledge base regarding the ability of existing interventions to interrupt parasite transmission,
3) to assess the status and prospects of new tools for treating, preventing, tracking, and
diagnosing the infection, 4) to discuss evidence related to potential for emergence of resistance
in O. volvulus to ivermectin, 5) to consider the scientific, operational, economic and
political/social feasibility of eradicating onchocerciasis, using currently available tools; and 6) to
propose future research needs and their implementation.

The feasibility of eradication of onchocerciasis was first examined during the meeting of the
International Task Force for Disease Eradication (ITFDE) in 1992,2 which concluded that
onchocerciasis could not be eradicated, but could be controlled to a point at which it would no
longer be a public health problem. An international meeting on Global Disease Elimination and
Eradication as Public Health Strategies, held in Atlanta in 1998,3 concluded that
“reconsideration” of the perceived barriers to onchocerciasis eradication “is now appropriate,
given the considerable progress” in morbidity control in West Africa and the Americas.  The
subject of eradication was again reviewed during a WHO meeting in September 2000,4 where the
prevailing opinion emerged that eradication of onchocerciasis in Africa was not possible with the
existing tools, but evidence suggested that onchocerciasis could be eliminated in the Americas.
A second ITFDE meeting on the subject of OEPA concluded in 2001 that eliminating ocular

                                                  
1 WHO.  Onchocerciasis and its control: report of a WHO Expert Committee on onchocerciasis control.  WHO Technical Report Series 1995; No.
852; 103 pp.

2 Recommendations of the International Task Force for Disease Eradication.  MMWR Recommendations and Reports 1993;42 (RR-16), 38 pp.

3 Goodman RA, Foster KL, Trowbridge FL, and Figueroa JP (eds). Global Disease Elimination and Eradication as Public Health Strategies.
Bulletin of WHO 1998; 76 (supplement 2): 162 pp.

4 Anonymous. (2000) Guidelines for Certifying Elimination of Human Onchocerciasis, including a Discussion of Critical Issues (September,
2000, Geneva. WHO/CDS/CPE/ CEE/DIP/00.008).
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morbidity and interrupting onchocerciasis transmission in the Americas, using currently
available tools, was scientifically feasible.

The deliberations of the Atlanta Conference on the Eradicability of Onchocerciasis (‘the
Conference’) reported herein used the definitions of terms recommended by the ITFDE and
endorsed by the Dahlem Workshop on the Eradication of Infectious Diseases in 1997.5 Thus:

Eradication is a permanent reduction to zero of the worldwide incidence of infection
caused by a specific agent as a result of deliberate efforts; intervention measures
thereafter are not needed.

Elimination is reduction to zero of the incidence of infection caused by a specific agent in
a defined geographic area as a result of deliberate intervention efforts; continued
measures to prevent reestablishment of transmission are required.

Control is the reduction of incidence or disease manifestations to a predefined point at
which public health authorities declare the condition to no longer be a public health
problem.  Continued measures are needed to keep transmission or morbidity at or below
this point.

It was noted that another meeting held in Atlanta in 1998 on Global Disease Elimination and
Eradication as Public Health Strategies6 recommended use of the term “regional eradication” in
lieu of “elimination”.

                                                  
5 Dowdle WR, Hopkins DR (eds).  The Eradication of Infectious Diseases: Report of the Dahlem Workshop on the Eradication of Infectious
Diseases.  Clichester, John Wiley & Sons, 1998: 218 pp.

6 Goodman RA, Foster KL, Trowbridge FL, and Figueroa JP (eds). Global Disease Elimination and Eradication as Public Health Strategies.
Bulletin of WHO 1998; 76 (supplement 2): 162 pp.
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Summary of Conference Discussions
(See Appendix C for synopses of presentations submitted to the Conference by invited speakers.)

African Perspective
The first large-scale control effort against river blindness, the Onchocerciasis Control Program
(OCP) in West Africa, was launched in 1974 as a regional program in seven West African
countries with the objective to eliminate onchocerciasis as a disease of public health importance
and an obstacle to socio-economic development. Its strategy was aerial application of insecticide
to kill the larvae of the vector Simulium damnosum s.l. in their riverine breeding sites in order to
interrupt transmission of infection for the period necessary for the adult O. volvulus worms in
humans to completely die out (the longevity of the adult O. volvulus is estimated to be 14 years).
Later with the donation of ivermectin, a safe microfilaricidal drug, by the pharmaceutical firm
Merck & Co. Inc. to onchocerciasis programs, mass ivermectin treatment was applied broadly in
OCP as an adjunct to vector control, or as the sole control measure.   The OCP will formally
close at the end of 2002.

The second major African regional program, the African Program for Onchocerciasis Control
(APOC), was launched in 1995 to control onchocerciasis in the remaining endemic countries in
Africa.  The goal of APOC is to control onchocerciasis to a point where it is no longer a public
health problem or a constraint to socio-economic development.  APOC aims to establish
effective and self-sustaining ‘Community-Directed Treatment with Ivermectin (CDTI)
throughout the remaining endemic areas outside OCP.  Using the ‘REMO’ rapid disease
mapping methodology, APOC targets communities found to have an onchocercal nodule
prevalence of >20% for annual CDTI.  In addition, APOC is charged, where possible, to
eliminate the vector and hence the disease from carefully selected isolated foci, using
environmentally safe insecticides.

APOC has not yet used ivermectin long enough to be able to generate data to assess the impact
of treatment on morbidity or transmission of infection.  A multi country study to measure impact
has collected baseline data in 13 sites, which will be re-evaluated in 2004, and again in 2009,
prior to the end of APOC (in 2010).  Therefore, the best information available to judge the
eradicability of onchocerciasis in Africa at this time comes from the OCP.  Results of OCP
surveillance data analysis from the central part of the original program area demonstrate that
interruption of onchocercal parasite transmission has been maintained without any control effort
for over a period of 12 years. This original program area underwent 14 years of effective vector
control. Recently, a major review has been undertaken of the OCP evaluation data on the long-
term impact of ivermectin treatment.1 It was concluded that ivermectin treatment has been
extremely successful in controlling onchocerciasis to the point where it is no longer a public
health problem in all endemic areas of the OCP.  Community Microfilarial Loads (CMFL), an
index of intensity of infection, have dropped to close to zero.  In areas where ivermectin
treatment of populations has been the sole strategy and carried out in different river basins at

                                                  
1 Summary report of the OCP/TDR meeting on the impact of ivermectin on onchocerciasis transmission. World Health Organization, 2001,
Document JPC22-JAF7/INF/DOC.2
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different frequencies (quarterly, semi-annually and annually) for up to 12 years, there are not
sufficient data available to demonstrate that parasite transmission has been interrupted.  Further
studies are required before a judgment can be made.

However, even when transmission is interrupted with ivermectin, it can recur if ivermectin
treatment is stopped prematurely.  For example, in the mesoendemic Coruba River basin in
Guinea Bissau, civil unrest in 1997 resulted in the suspension of an intensive quarterly
ivermectin distribution program after five years of operations.  Despite prevalence levels having
fallen in the basin to near zero in 1996 after 20 rounds of treatment, evaluation carried out four
years after the disruption of the distribution program showed that recrudescence of infection has
occurred.  Thus, even in the setting where transmission may be interrupted, it will likely resume
if interventions are halted before the entire duration of the lifespan of adult O. volvulus worms
(about 14 years).

There have, however, been exceptions in the effectiveness of vector control in interrupting
transmission in OCP. Vector control that was started in 1977 has not been effective in
interrupting transmission in the area around the Oti tributaries (Kara, Keran and Mo Basins) in
Togo. Reinvasion of Simulium from the southern part of the program area accounted for the
initial poor results at interrupting transmission. The extension of vector control southwards of the
Program area in 1987 to treat the source of re-invasion, together with adding annual ivermectin
treatment of populations in the area was not sufficient to stop transmission. Factors explaining
these poor results include very poorly accessible mountainous terrain that hinders good
ivermectin coverage, dry season migration of people pursuing gold mining, and reinvasion of
black flies from the head waters of the Oti river after vector control was stopped there in 1996.

Reinvasion by vector black flies has challenged vector control efforts from the very onset of the
OCP.  Vectors flying from as far away as 500 kms from Sierra Leone and Guinea, assisted by
Monsoon winds, have compromised larviciding operations and necessitated an extension of OCP
operations to southern Cote d’Ivoire in 1978, and to the Western and Southern OCP area from
1988 - 1990.  In addition, dry season reinvasion of black flies cruising on Harmattan winds from
the north has been blamed for the rapid dispersion of insecticide-resistant black flies to other
river basins in OCP.  Fly movements could potentially promote dispersion of ivermectin
resistance too, if it were to occur.

Whilst fly movements can promote the spread of onchocerciasis from uncontrolled to controlled
areas, incompatibility in vector-parasite complexes seems to work to limit the infection.  Studies
show that in West Africa, flies from the savanna region are less effective in supporting
transmission of forest strain O. volvulus.  The converse has also been observed.  These
phenomena are limiting factors to the extension of infection from the savanna into the forest and
vice versa.  Incompatibility in vector-parasite complexes is not absolute, as at least one vector
species, S. soubrense, is capable of effectively transmitting both forest and savanna strains of O.
volvulus.
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American Perspective
Compared to Africa, the entomological and epidemiological characteristics of onchocerciasis in
the Americas favor a strategy aimed at elimination.  Many of the American Simulium vector
species are inefficient vectors due to their having a ‘cibarial armature’ that destroys most of the
microfilariae they ingest in a blood meal, so preventing the development of microfilaria to
infectious larvae.  The localization of American onchocerciasis foci is in large part due to the
requirement of very high vector densities and a human population with high microfilaria loads in
the skin to maintain a viable transmission cycle.   Thus, human population movements in the
Americas are less likely to introduce or reintroduce onchocerciasis, since there are few such
‘permissive’ transmission environments.

In Guatemala where the ‘armed’ vector S. ochraceum is the principal vector, it has been shown
in community-based studies that ivermectin administered at 6-month intervals can maintain
levels of microfilaria in skin so low as to interrupt transmission.  The community studies
indicated that transmission could only be interrupted if sufficient coverage (>80% of eligibles)
was achieved.  Later it was demonstrated in an operational setting in a river basin in Ecuador that
O. volvulus transmission was interrupted after five years of semi-annual ivermectin treatment, an
observation particularly interesting since the vector there was the ‘unarmed’ S. exiguum, which is
as efficient as the African vectors S. damnosum.

The Onchocerciasis Elimination Program for the Americas (OEPA) was launched in 1992,
following a resolution of the XXV Directing Council of the Pan American Health Organization
in 1991 to eliminate new morbidity from onchocerciasis from the Americas by 2007.  OEPA also
aims to eliminate onchocerciasis transmission wherever feasible using a strategy of semi-annual
mass distribution of ivermectin to at least 85% of the eligible population.  Current
epidemiological information shows that in the six endemic countries of the Americas (Brazil,
Colombia, Ecuador, Guatemala, Mexico, and Venezuela) there are some 440,861 persons who
need treatment, living in 1,969 endemic communities.   Over 90% of these reside in Mexico,
Guatemala and Venezuela.   In 2001, 84% of these persons were offered at least one dose of
ivermectin by national programs operating in each of the endemic countries.

Recent entomological and serological evaluations in the Americas carried out with OEPA
support have provided strong evidence that parasite transmission has been interrupted in 5 of 7
river basins in Ecuador, in the single Colombian focus, and in the Oaxaca focus in Mexico.
Transmission continues in foci where semi-annual ivermectin coverage has not been optimal:
southern Chiapas in Mexico, in Guatemala and Venezuela.  Elimination of onchocerciasis from
southern Venezuela and Brazil will be particularly difficult given the problems reaching the
nomadic Amerindians (the Yanomami) in parts of the immense Amazonian forest.  However, in
2001 the Brazilian program demonstrated that it could indeed reach 80% coverage of these hard
to reach populations.  The challenge is to help the American programs deliver ivermectin
treatment with high coverage twice per year.  If this challenge is met, the data indicate that it is
possible to interrupt transmission of O. volvulus in all foci in the Americas by 2007, perhaps with
the exception of southern Venezuela (which contains <1% of the total at risk population in the
region).
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Modeling of Onchocerciasis Control
Two mathematical models were discussed during the Conference, ONCHOSIM and SIMONa.
The ONCHOSIM model was originally developed to help OCP decision-making with respect to
duration of vector control; the model was subsequently modified to incorporate ivermectin
treatment.   ONCHOSIM has been used to predict impact on onchocerciasis transmission from
vector control alone, ivermectin alone, or combined ivermectin/vector control, and its predictions
have been continuously tested against the entomological and epidemiological evaluation data of
the OCP.  Its predictions show that vector control conducted optimally requires 14 years to
interrupt transmission, but the addition of ivermectin to vector control can shorten the required
duration of control to 12 years. Elimination of transmission by ivermectin treatment alone would
require a relatively long time period and very high treatment coverage, especially in
hyperendemic areas. The simulations of the impact of ivermectin treatment were for an ‘isolated
system’ uninfluenced by human and fly migration.  Although the original model predictions did
fit the observed data for the first five years of ivermectin treatment, comparison with the latest
results for 12 years of treatment suggests that ONCHOSIM’s predictions of the feasibility of
elimination (even for an isolated system) are overly optimistic, probably because of the
assumptions pertaining to the impact of ivermectin on O. volvulus fecundity. Further fine-tuning
of ONCHOSIM is ongoing within the context of the detailed analysis of the OCP evaluation data
on 12 years of ivermectin treatment.

SIMON was originally written to model forest strain transmission of onchocerciasis in Africa.  It
is a more ‘conservative’ model than ONCHOSIM in that SIMON does not include an assumption
that ivermectin has an irreversible effect on the fecundity of adult O. volvulus worms.   SIMON
has been recently adjusted to parameters of American vectors (SIMONa) and used to simulate a
single hyperendemic sentinel village in Ecuador.  Baseline and surveillance data from that
village with over 11 years annual and semi-annual ivermectin treatment (with dates and
treatment coverage figures) were entered into the model.  Model predictions for infection rates in
flies, serologic rates in children, CMFL, microfilaria prevalence in skin, and ocular disease were
compared with corresponding observations in the village over time.  With one exception model
predictions matched observations (the exception is ocular punctate keratitis, which was observed
to be higher than predicted by the model).  In the second stage of the analysis, SIMONa was used
to project when transmission could be eliminated and treatment halted, assuming continued
semi-annual ivermectin treatments at > 85% coverage of eligibles (and assuming there was no
new introduction of O. volvulus infection from immigration of infected individuals).  The model
predicted that after 2004, ivermectin treatment could be safely withdrawn (without running any
risk of recrudescence).

Future comparison and validation of these and other model predictions is important.  For such
validation, it would be useful to have a serological marker to measure presence of adult worms,
since in the Ecuador example observed infection rates in black flies and humans are now
undetectable, yet recrudescence risk in the SIMONa projection remains considerable until 2004.
There is also a need to use models to predict if continued low levels of transmission have true
biological significance to the survival of O. volvulus in difference ecological settings.
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Ivermectin Resistance
There is no documented evidence for ivermectin resistance in O. volvulus (or any animal filarial
species) despite intense use of ivermectin in mass treatment programs for many years.  However,
high-grade ivermectin resistance emerged relatively quickly in intestinal trichostrongilid
nematodes of sheep, goats and cattle.  The fact that onchocerciasis control will likely remain
dependent for many years upon mass ivermectin distribution has led to the speculation that
conditions are favorable for emergence of ivermectin resistant O. volvulus.  Changes in genetic
polymorphism with selection have been noted in O. volvulus specimens obtained from human
populations exposed to multiple ivermectin mass treatments rounds, compared to worms
examined from naïve human populations.  A recent report from Ghana of human non-responders
to ivermectin (defined as individuals with microfilaria (mf) counts in skin >10 mf/snip after nine
or more rounds of ivermectin treatment) has prompted a detailed clinical study on the issue, the
results of which are still awaited.  Research is ongoing to develop tools for detecting ivermectin
resistance that could be easily deployed in large-scale ivermectin treatment programs.  This is
based on the assumption that if resistance is detected early strategies can be devised to contain it
before it becomes widespread.

If ivermectin resistance in O. volvulus were to develop, it is possible that these parasites would
be at once cross resistant to moxidectin.  This is due to the fact that the two drugs share the same
3-dimensional chemical configuration and so likely the same receptor and the same mode of
action.  However, it is not necessarily true that such cross-resistance would have the same impact
because of the very different pharmakinetics of the two compounds.

Sustainability of Ivermectin Delivery
Both African programs (APOC and OCP) embrace the strategy of Community-Directed
Treatment with Ivermectin (CDTI) with the aim to sustain ivermectin treatment in the endemic
countries in Africa.  The philosophy of CDTI is to empower the communities to make their own
decisions (such as selection and remuneration of distributors, time of distribution, method of
distribution, etc.) about the distribution process.  It is believed that ivermectin treatment will be
sustained if the traditional structures of the people are respected, and the motivation of
Community-Directed Distributors (CDD) is provided through their own kinsmen.  Also critical
to sustainability is a central and peripheral health care system that can provide health education,
training, supervision and monitoring of the program, acting in support of the community and its
decision, ideally through an integrated approach.  Drug reporting, ordering, and supply are other
critical functions that must be strengthened and sustained.  Financial and technical support
emanating from the OCP/APOC Program and partner NGDO’s so far has resulted in the success
of the CDTI approach.  The immediate challenge is to maintain this performance record in the 11
countries of OCP when that program comes to an end in 2002.

OEPA’s challenge in the Americas is to reach and maintain the highest possible ivermectin
treatment coverage, twice per year, to first interrupt transmission, and then maintain program
performance and coverage for the duration of the life span of the adult worms.  This
accomplished, the endemic focus will go through a three-year pre-certification surveillance
period without treatment. Demonstration of continued interruption of transmission thereafter will
entitle the endemic country to be ‘certified’ as having eliminated onchocerciasis.  The UTG(2)
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(twice the ‘Ultimate Treatment Goal,’ which is the number of eligible persons for treatment in
the region) has been adopted to simplify the monitoring and motivate country programs to meet
their coverage objectives.  In 2001, the combined American programs treated 80% of the
regional UTG(2) of 881,722.  In the future, OEPA hopes to help country programs monitor
information on coverage at the community level, so that health staff can target those
communities failing to reach >85% coverage for special interventions (such as additional health
education, technical training, etc.) so as to assure that transmission interruption is simultaneously
achieved within an endemic focus.

Loa loa as an Obstacle to Control or Eradication of Onchocerciasis
Serious adverse effects (SAEs) related to the central nervous system, including several deaths,
have occurred after mass ivermectin treatment, primarily in Cameroon.  These SAEs have been
observed where Loa loa is coendemic with onchocerciasis, at a rate of about 8 SAEs per 10,000
ivermectin treatments.  The SAEs occur principally after the first or second round of treatment,
with individuals having high-grade Loa loa microfilaremia (>8,000 mf/ml blood) being at
greatest risk.  Remote sensing and GIS studies have generated maps of overlapping endemicity
of onchocerciasis and loaisis in Africa based on REMO and remotely sensed vegetation indices
that correspond to the permissive sites for Chrysops (the Loa loa vector) breeding sites.   Special
measures for managing patients with SAEs are recommended for ivermectin distribution
programs operating in these high-risk onchocerciasis/loaisis coendemic areas.  Ivermectin
treatments should be provided in such areas only after good medical supervision and referral
systems have been put in place.  Special training and medical supplies are made available to
referral health facilities that are on alert during the treatment period.   Lastly, village-by-village
assessments for onchocerciasis are undertaken to ensure that mass treatments are only provided
in communities where onchocerciasis is ‘a public health problems (i.e., communities with >20%
nodule rates).  The latter recommendation indicates that Loa loa coendemicity would be an
important obstacle to a goal of onchocerciasis eradication, since it precludes expansion of mass
treatment to some hypoendemic onchocerciasis areas (where onchocerciasis morbidity usually is
not observed, but where onchocerciasis transmission can occur).

A new community diagnostic procedure (called ‘RAPLOA’) based on a simple questionnaire,
when validated this year, may simplify the process of determining areas at highest risk of Loa-
associated SAEs.  The use of this technique could facilitate the safe expansion of mass
distribution programs in hypoendemic onchocerciasis villages in Loa-coendemic areas.

Human Migration, and Political and Social Aspects of Eradication
Considerable human migration, both voluntary and forced, occurs throughout many of the
onchocerciasis endemic areas in Africa.  An eradication effort would need to achieve the
required coverage among migrants or transient groups in conditions where these groups are often
marginalized from the healthcare system, or where that system does not exist due to conflict.
Drug distributors willing to work under these conditions would need to be trained to reach
migrants, or distributors from among transient groups would need to be identified and trained.
Census figures for determining coverage would have to be adjusted to account for new residents
or transient populations.  In areas of conflict, security related challenges would include obtaining
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access to the conflict area through negotiation with warring factions, and establishing periods of
tranquility.  Skilled negotiators familiar with the warring parties and the prevailing issues could
promote health as a non-political issue, or ivermectin distribution as a peace tool, or as a means
of providing other essential health services to care for more lethal conditions.  Ivermectin
distribution can be successfully undertaken within conflict areas.  In Sudan, distribution activities
have grown over the years through a strategy that employs two separate but well-coordinated
programs, operating on both sides of the battle line (one in the government-held areas and the
other in the rebel-held areas).  However, tailored approaches appropriate to the nature of each
crisis must be designed, which almost always implies increased costs.

Economic Aspects of Eradicating Onchocerciasis
Economic studies carried out for donors to APOC considered primarily the costs to be borne by
those donors.  These studies revealed a 24% economic rate of return to the donors’ investment in
that control program.   However, further economic studies have not yet been done that
incorporate the costs of all partners (donors, NGDOs, countries, communities) to effectively
compare the options of control versus eradication.  To be thorough, such an analysis of
onchocerciasis control should include the possible scenarios of a) continued donation and
effective distribution of ivermectin indefinitely in order to maintain control of onchocerciasis to
the point where it is not a public health problem, and b) possible future resurgence of
onchocerciasis because of failure to maintain ivermectin coverage or due to ivermectin
resistance.  If, at some future date, it is determined that onchocerciasis could be eradicated, doing
so is likely to include a greater benefit/cost ratio if mass treatments could be halted eventually,
reduced risk of ivermectin resistance, and reduced risk of recrudescence of the disease.



17

Conclusions and Recommendations of the
Conference on Eradicability of Onchocerciasis

Key Conclusions and Recommendations:
1. The Conference concluded that onchocerciasis is not eradicable using current tools due to the

major barriers to eradication in Africa, which include: a) data that show that the principal
tool, ivermectin, when used as a single intervention, cannot consistently interrupt
transmission in the African setting; b) the programmatic challenges of an expansive endemic
area with mobile vectors and infected human populations, poor health infrastructure, and
political instability; c) the presence of co-infections with Loa loa in many onchocerciasis
endemic areas (where adverse reactions can occur to ivermectin treatment); and d)
inadequate funds and poor political support for the more expensive undertaking of
eradication, which would require increasing the population receiving ivermectin treatment by
also targeting hypoendemic areas to interrupt transmission. Although interruption of
transmission of onchocerciasis cannot currently be achieved in most of Africa, the
Conference noted that programs that use ivermectin have been successful in controlling
onchocerciasis to the point of it no longer being a public health problem. The Conference
recommended that ivermectin treatment in community based control programs should
continue, albeit indefinitely, and that efforts be made to maintain the transmission free status
of those areas now freed of onchocerciasis by OCP.  In particular, there is need for additional
research in developing safe and easily administered macrofilaricides (drugs which could kill
the adult O. volvulus parasite) and thus reduce the time needed for the program to eliminate
adult worms from an endemic area.  The specter of resistance to ivermectin, which has not
yet been identified, was considered a potential threat to global control of onchocerciasis, and
research for a probe for resistance monitoring and for replacement drugs was recommended.

2. The Conference concluded that in most if not all the Americas, and possibly Yemen and
some sites in Africa, transmission of onchocerciasis can be interrupted with current tools due
to the characteristics of the vectors, and the geographic isolation of the onchocerciasis foci.
The Conference recommended that programs in the Americas and other carefully selected
sites aim not for mere control of the disease, but for the complete interruption of
transmission, using all appropriate and available interventions, so that the parasite could
eventually be eliminated and interventions halted.  Research is needed to develop tools to
guide decision-making related to the duration of these treatment programs aimed at
elimination of onchocerciasis.

Other Conclusions and Recommendations from Working Groups:
(See Appendix D for the Working Group Presentations to the Conference)

1. Feasibility of eradication with ivermectin:

∞ In Africa, the use of ivermectin has not been shown to provide a conclusive, secure and
consistent interruption of O. volvulus transmission.  In contrast, in the Americas, where
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ivermectin has been used effectively (good geographic and therapeutic coverage at semi-
annual regimen), interruption of transmission has been achieved.

Recommendations
∞ More information is needed on the impact of ivermectin intervention (including

frequency of distribution, seasonality, etc) on transmission in different settings in Africa.

∞ Research (including mathematical modeling) is needed to provide a better understanding
of very low levels of onchocerciasis transmission on sustaining the parasite.

2. Drug Delivery and Distribution Strategies:

∞ There is no single global approach to onchocerciasis control or elimination efforts, but
rather a need for flexibility of delivery strategies depending on goals (control versus
elimination) and country/regional situations.  There is however a need to share
experiences across programs and countries/regions.

∞ Geographic coverage of hypoendemic areas will vary according to the objective of the
program (control or elimination of transmission).  In control programs more highly
endemic communities may be chosen for treatment, while in elimination programs, all
communities where transmission is likely to occur must be targeted.  However the
objective within such targeted communities should always be to reach and sustain the
highest possible ivermectin treatment coverage of the resident population.

Recommendations
∞ Develop and test ivermectin delivery strategies that will ensure and sustain high levels of

coverage in the many and varied sociological, cultural and epidemiological settings
where onchocerciasis is endemic.  Elements of treatment activities should be geared to
reach immigrants.

∞ Tailor health education to existing knowledge or misconceptions in the communities,
with the view to improve coverage and avoid systematic non-compliance (refusal by
certain individuals to ever take treatment).

∞ Strengthen the health system centrally and at the periphery in order to improve its
function in support of communities.

∞ Encourage community-directed treatment in Africa, where appropriate.

∞ In areas of conflict, use health to promote peace, and allow extreme flexibility in the
implementation of health strategies, being sensitive to the needs and expectations of the
people there.  Annual cease-fires (such as weeklong cease-fires for immunization and
mass drug distribution) should be encouraged.

3. Monitoring and Surveillance

∞ Depending upon whether the goal is disease control or interruption of transmission,
surveillance activities will differ qualitatively & quantitatively in terms of frequency,
depth and duration of data collection and analysis.  If transmission interruption and
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eventual parasite elimination is the goal, then additional resources will be required to
maximize surveillance activities.

∞ Although there is as yet no evidence of ivermectin resistance in onchocerciasis, its
emergence is theoretically possible given the wide and prolonged use of ivermectin in
the setting of ongoing transmission.  Resistance to ivermectin might be contained if
detected early.  Monitoring for ivermectin resistance is required in both control and
elimination programs.

Recommendations
∞ Collect accurate data on geographic and population coverage that are subject to regular

random audits.  Programs aiming for interruption of transmission must target poorly
compliant communities, as well as identify if systematic or repeated non-compliance to
treatment occurs among individuals.

∞ Establish regular exchange of data, experiences, methodologies and approaches between
the different programs in order to highlight similarities and differences.

∞ Develop better entomological surveillance systems and establish thresholds of infection
rates in black flies below which no transmission occurs.

∞ Develop working surveillance definitions for “ivermectin non-responders’ and clinical or
laboratory ivermectin resistance.  Examine “non-responders” from different countries
following a standardized protocol. Develop surveillance and monitoring strategies for
early identification of resistance within mass treatment programs.

∞ Develop a containment strategy to stem such resistance if detected.

4. Product Research and Development

∞ The progress and investments made to date to control onchocerciasis need to be
protected through continued support of fundamental research.  Such support should
include work on basic biology of O. volvulus and related filarial nematodes (particularly
pertaining to understanding potential mechanisms of ivermectin resistance) as well as
new product development (drugs, vaccines, diagnostics).

∞ There is a need for drugs that will shorten the duration of the current prolonged
treatment period required for ivermectin treatment.  Ideally, these new drugs should kill
or sterilize the adult O. volvulus parasites (e.g., a macrofilaricide) and be cheap, safe and
easy to administer in mass treatment programs.  A macrofilaricide might make
interruption of parasite transmission in Africa possible and justify a future effort to
undertake global eradication of onchocerciasis.

∞ There is a clear need for the identification of an additional drug(s) that could be used in
the event of emergence of ivermectin resistance.

Recommendations
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∞ Drug research:  Fund pharmacological research for drugs targeting O. volvulus or the
essential endosymbiont, the Wolbachia sp.  Use new approaches to drug discovery,
including high throughput screening and the use of genomic data to identify rational
targets.  Solicit pharmaceutical companies to include Onchocerca species in their
veterinary screens to identify candidate compounds.  Carefully consider data on
moxidectin with respect to its macrofilaricidal and macrofilaristatic activity, safety
profile, pharmocokinetics in humans, and cross-resistance with ivermectin.

∞ Essential support for candidate drugs and vaccines:  Maintain the O. ochengi animal
model and clinical centers of excellence so that candidate drugs or vaccines can be
promptly evaluated.

∞ Diagnostics:   Develop and deploy monitoring tools to assess the presence of viable adult
worms (a macrofilarial assay) and to detect early (pre-patent phase), new infections in
humans.  These tools are needed by programs, which aim at elimination of transmission
of onchocerciasis.  They should, whenever possible, use rapid assessment formats that
are ‘user friendly’, and have the ability to provide instant feedback.

∞ Resistance probe:  Develop and deploy methods and tools to detect O. volvulus
resistance to ivermectin. Work should continue on genotypic resistance assays.

∞ Vaccines:  Build upon the infrastructure already in place from the $21 million
investment of the Edna McConnell Clark Foundation in vaccine research for O. volvulus.
Research should pursue additional vaccine targets or employ newer techniques for proof
of principal target identification.
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Conference on the Eradicability of Onchocerciasis
The Carter Center/Cecil B. Day Chapel

Atlanta, Georgia, USA
January 22-24, 2002

FINAL AGENDA

Tuesday, January 22, 2002

8:00am Continental Breakfast (Ivan Allen Pavilion Foyer)

8:45am Introduction: Conference Purpose/Expected Outcomes

9:00am Impact of Existing Interventions on Onchocerciasis Transmission
9:00-9:15 Impact of vector control in OCP—Dr. L. Yameogo

9:15-9:35 Impact of ivermectin treatment, including multiple dose per year regimens, and
results of OCP/TDR conference—Drs. B. Boatin and H. Remme

9:35-9:45 Impact of ivermectin treatment in APOC countries—Dr. A. Seketeli

9:45-10:05 Impact of ivermectin treatment in OEPA countries—Drs. R. Collins and M.
Sauerbrey

10:05am Discussion

10:30am Coffee Break

10:45am Feasibility of Onchocerciasis Eradication Using Available Tools
A. Vector-Parasite Aspects: Vector-Species Characteristics

10:45-11:00 Differences between vector-parasite complexes relevant to elimination
—Dr. B. Duke

11:00-11:15 Vector species and transmission efficiency, and frequency of ivermectin
treatment—Dr. E. Cupp

11:15-11:30 Long-distance vector migration and onchocerciasis transmission—Dr. P. Guillet

11:30am Discussion

12:00pm Lunch (Cyprus Room)

1:00pm Feasibility of Onchocerciasis Eradication Using Available Tools (cont’d)
A. Vector-Parasite Aspects: Modelling
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1:00-1:15 ONCHOSIM: prediction of feasibility of onchocerciasis eradication
—Professor J. Habbema

1:15-1:30 SIMON: prediction of feasibility of onchocerciasis eradication—Dr. J. Davies

1:30pm Discussion

2:00pm Feasibility of Onchocerciasis Eradication Using Available Tools (cont’d)
A. Vector-Parasite Aspects: O. volvulus resistance to ivermectin: is it occurring?

2:00-2:10 Predicting risk of resistance. How quickly might it be expected?—Dr. W. Grant

2:10-2:20 Evidence for resistance and resistance monitoring in the field—Dr. K. Awadzi

2:20-2:30 Lessons from the veterinary field, with thoughts on surveillance for resistance
-Dr. R. Prichard

2:30-2:40 Cross resistance among the avermectins—Dr. W. Shoop

2:40-2:50 Cross resistance among the avermectins —Dr. U. Schwertschlag

2:50pm Discussion

3:15pm Coffee Break

3:30pm Feasibility of Onchocerciasis Eradication Using Available Tools (cont’d)
B. Operational Aspects--Achieving and sustaining high treatment coverage

3:30-3:45 Experience of APOC—Dr. U. Amazigo

3:45-4:00 Experience of OCP and challenges for post OCP monitoring—Dr. B. Boatin

4:00-4:15 Experience of OEPA—Dr. F. Richards

4:15-4:25 Integration of ivermectin delivery in national health systems—Dr. E. Tarimo

4:25-4:35 Community participation—Mr. M. Katabarwa

4:35-4:45 Mapping treatment areas in Africa—Dr. M. Noma

4:45-4:55 Loa loa issues—Dr. S. Meredith

4:55-5:45 Discussion

Wednesday, January 23, 2002

8:00am Continental Breakfast (Ivan Allen Pavilion Foyer)

8:45am Feasibility of Onchocerciasis Eradication Using Available Tools (cont’d)
C. Political/Social Aspects

8:45-9:00 Relevance of insecure endemic areas—Dr. C. MacKenzie

9:00-9:15 Long-distance human migration— Dr. D. McFarland
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D. Economic Aspects
9:15-9:35 Economic aspects of eradicating onchocerciasis—Dr. A. Haddix

9:35am Discussion

10:00am Research Needs
10:00-10:05 Introduction to onchocerciasis work at the Hamburg conference—Dr. A. Hoerauf

10:05-10:15 Update on existing drugs—Dr. D. Buettner

10:15-10:25 Update on development of new drugs—Dr. A. Hudson

10:25am Coffee Break

10:40am Research Needs (cont’d)
10:40-11:00 Update on diagnostics—Dr. G. Weil

11:00-11:20 Update on vaccine—Dr. E. Ottesen

11:20-11:40 Update on drug delivery research—Dr. H. Remme

11:40pm Discussion

12:30pm Charge to the Working Groups

12:40pm Group photo

12:45pm Working Groups
(Box lunches will be provided in each breakout room.)

The charge for the working groups will be:

1) To reach a consensus if possible; if not, to provide a reflection of the main opinions
presented, and

2) To provide, based on this, draft recommendations for further actions to be discussed in
plenary

1. Feasibility of eradication with ivermectin
Discussion to include:
- evidence on the impact on transmission after 12 years of ivermectin use.
- latest model predictions of feasibility of elimination
- principal determinants of feasibility
- favourable factors, obstacles and challenges

2. Drug delivery strategies
Discussion to include:
-options for delivery strategy (mobile, community directed, etc…)
- community roles
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- political commitment by government
- funding
- areas of conflict
- any needed operational research

3. Monitoring and surveillance
Discussion to include:
- epidemiology, entomology, mathematical modeling and resistance
monitoring;
- any needed operational research
- surveillance and recrudescence control in areas where onchocerciasis has
been eliminated e.g. central OCP area, OEPA

4. Product Research & Development
Discussion to include:
- macrofilaricide
- new diagnostics
- resistance monitoring tools
- vaccines

6:00pm Optional Jimmy Carter Presidential Museum Tour (self-guided)

7:00pm Conference Reception (Carter Presidential Museum Lobby)

Thursday, January 24, 2002

8:00am Continental Breakfast (Ivan Allen Pavilion Foyer)

9:00am Reports of Working Groups

10:30am Coffee Break

11:00am Reports of Working Groups (cont’d)

12:00am Lunch (Cyprus Room)

1:00pm Reports of Working Groups (cont’d)

2:45pm Coffee Break

3:00pm Conclusions/Recommendations

4:00pm Adjournment
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Dr. Laurent Yameogo
Impact of vector control in OCP

IMPACT OF VECTOR CONTROL ON ONCHOCERCIASIS TRANSMISSION IN OCP
L Yaméogo, JM Hougard, LKB Akpoboua, M Sarr,

Y Bissan, L Toé, A Aké, and BA Boatin

Seven West African countries started the Onchocerciasis control in 1975 in the most blinding
onchocerciasis area, a large savannah area (654 000 km2), after the launching of the
Onchocerciasis Control Programme (OCP) in 1974. The area was hyper-endemic showing
prevalence rates of about 70% and, in some villages, blindness rates up to 9%. Moreover, the
frequency and level of evolution of ocular lesions and of onchocercal blindness were among the
highest in the world.

 To achieve its objective which was to eliminate onchocerciasis as a disease of public health
importance as well as an obstacle to socio-economic development, the Programme put in place a
strategy to interrupt the transmission of the parasite, Onchocerca volvulus, which consisted in
destroying the vector at its most vulnerable stage, i.e., the larval stage, by spraying the rivers of
the affected areas with insecticides. Taking into account the duration of the larval life of
Simulium damnosum s.l., vector control was based on weekly treatment of the breeding sites,
each time the hydrological conditions were favorable to the development of blackfly larvae.

However, vector control can only be effective if it is continued until the disappearance of the
human reservoir of parasite, i.e., for some 14-15 years.

 At the beginning, the size of the area under insecticide treatment was such that the regions
located at its center, colonized by S. sirbanum were protected from any exogenous parasitic
contamination (brought by human or blackfly populations). Insecticide treatments were
conducted with temephos, a cheap and efficient organophosphorous insecticide with insignificant
impact on non target aquatic invertebrates and vertebrates. The sprayings, carried out essentially
by aircraft, started in 1975 and were completed in 1989 in most parts of the area, i.e., 14 years
after the beginning of control operations. However, at the edges of the southern part of the area,
reinvasion of flies from non-treated rivers was an obstacle to a complete success of the
larviciding.

 The ATP is the index most frequently used to quantify transmission. It is defined as the
theoretical number of infective larvae that the same individual placed at this catching point
during the same period of time would receive. Above 800 infecting larvae per person and per
year, the ATP is associated with the clinical signs of hyperendemicity1. Below 100, it is
considered that onchocerciasis transmission has virtually been interrupted and that the disease is
no longer a major public health problem. The infectivity rate is a way of expressing the intensity
of transmission. It is independent of blackfly density and corresponds to the number of infectious
females (carrying infective larvae) per 1,000 females caught. This index will be mostly used to
evaluate the residual transmission after the complete cessation of insecticide spraying because
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the collection of field data entails fewer operational constraints compared to that for the
calculation of the ATP.

In the central zone of the original Programme area, transmission of the parasite has been
interrupted all along the vector control period. At Loaba on the Nakambé river and at Ziou Zabré
on the Nazinon river, the ABR fell down from 6 090 and 11 879 in 1975 to 238 and 1 465
between 1976-1989 respectively. At the same time, the ATP at the same catching points were
also reduced  from 309 and 880 to zero between 1982-1989. A similar trend was observed at
Bagre on the Nazinon and at Bitou on the Nouhao, a tributary of the Nakambé river.

The infectivity rates of flies caught 10 years after the cessation of larviciding indicate a better
situation than the results obtained only two years after the stopping of larviciding as shown in
Table 1.

 Table 1: Infectivity rates recorded at Ziou Zabré and Loaba before the beginning of
insecticide treatments and then 2 and 10 years after stopping treatment.

 

infectivity rates (in brackets: blackflies caught)
1975 1991 1999

Ziou Zabré 33.05 ( 2,239) 0.25 (44,000) 0.05 (18,600)
Loaba 37.48 (1,574) 0.17 (6,000) 0.00 ( 8,500)

In certain zones at the limit of the initial Programme area (Oti tributaries in Togo, Leraba/Comoe
in Burkina Faso, Baoulé and Sankarani rivers in Mali, White Bandama in Côte d'Ivoire, Lower
Black Volta in Ghana), the effectiveness of the vector control measures was not as good as in the
central part referred to above. It was demonstrated that reinvasion of flies from outside the
treated areas was the obstacle to the success of the control operations. The origin of the invading
blackflies was identified and, in 1979, larviciding was extended to the rivers in the south of Côte
d'Ivoire then, in 1988, to the south of Togo, Benin and Ghana and, in 1989/1990, to Guinea and
Sierra Leone. The impact of these extensions on the entomological results of most of the
reinvaded areas was quite good. The ABRs and ATPs were strongly reduced at Pont frontiere on
the Leraba for example (from 26 314 and 1263 in 1975 to 3 418 and 4 at the cessation of the
larviciding period in 1989 respectively). However, even though an improvement of the
entomological situation was observed on the Oti tributaries, the results are not as good as
expected. Many factors such as the involvement of different vector species in the transmission,
the complexity of the area, human population movements, the suspension of larviciding on
neighboring rivers and therefore contamination of flies from those untreated rivers explain this
situation.

Nevertheless, even without a complete elimination of the parasite in the Programme area, it is
quite obvious that transmission has been virtually interrupted in some areas through larviciding
alone, based on the results of prevalence and ophtalmological studies.
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Some hyperendemic areas of the Onchocerciaisis Control Programme in West Africa (OCP)
have had, for the past twelve years, both ivermectin treatment and vector control through
larviciding. In comparing the impact of this combined control strategy with an exclusive vector
control approach, the evolution of transmission in two quite similar study areas in terms of
entomological, parasitological and epidemiological situations have been monitored. The
parameters used to quantify the transmission were the number of infective females per 1000
parous female flies and the number of infective larvae of the parasite Onchocerca volvulus per
1000 parous females. The study area with the combined treatment is situated in the humid
savanna zone of Guinea, in the Upper Niger basin. That with the exclusive larviciding is situated
in the Upper Sassandra basin in Côte d'Ivoire, also in the humid savanna zone ("guinean"
savanna). In these two areas, Simulium sirbanum, a savanna blackfly species, is present all year
round. The forest species, mainly Simulium squamosum, are well represented during the rainy
season with a predominance over the savanna species from July to October. In comparing the
data on evolution of transmission in the Upper Niger and Upper Sassandra basins it is found that:
before larviciding began, in Guinea, transmission levels were around 14.5 infective females and
18.8 infective larvae per 1000 parous females respectively (averages over two years period).
Combined larviciding and ivermectin distribution had an immediate impact on transmission
which fell by about 90% after only two years of intervention. In Côte d'Ivoire, transmission
levels before the beginning of operations was around 13.8 infective females and 31.2 infective
larvae per 1000 parous females respectively (averages over a five year period). Contrary to the
preceding case, it took six years for transmission to drop down to fairly comparable levels with
those of the Upper Niger basin. These results clearly show that ivermectin "maximizes" the
effect of vector control by reducing transmission more rapidly (90% reduction in two years
instead of six). In operational terms, this impact of ivermectin contributes to the reduction in the
total duration of control operations, now estimated at twelve years or so. On this basis but taking
into account the entomo-epidemiological evaluation results mainly, the larviciding operations in
most of the basins of Guinea stopped at the end of 2001.

Vector control is therefore the most powerful and definite tool for oncho elimination. Combined
with ivermectin, its effects are enhanced allowing for a shorter duration of control activities. This
latter point needs nevertheless to be confirmed by surveillance results after a complete cessation
of control measures in the OCP extensions' areas.
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Drs. Boakye Boatin and Hans Remme
 Impact of ivermectin treatment, including multiple dose per year regimens,

and results of OCP/TDR Conference

SUMMARY REPORT OF THE OCP/TDR MEETING ON THE IMPACT OF

IVERMECTIN ON ONCHOCERCIASIS TRANSMISSION

Held at the Dept. Public Health, Erasmus University Rotterdam, Rotterdam, the Netherlands
3-5 October 2001

Information in this section is the basis for a publication that has been submitted to BMC
Filaria Journal. Please see Filaria Journal (http://www.filariajournal.com) for the
manuscript entitled: Impact of ivermectin on onchocerciasis transmission.
Assessing the empirical evidence that repeated ivermectin mass treatments may
lead to elimination/eradication in West-Africa.
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Dr. Richard C. Collins
 Impact of ivermectin treatment in OEPA countries

IMPACT OF IVR TREATMENT ON TRANSMISSION IN OEPA COUNTRIES

RC Collins

One goal in the Americas is suppression of L3 transmission over the long term, eventually
leading to local eradication of the parasite.  The magnitude of this task can be appreciated by
comparing thresholds of ATP required for elimination of eye disease with that required for
maintenance of an autochthonous transmission cycle, or endemicity (ATP is the annual rate of
exposure to L3s per person).   An ATP of less than 100 is generally associated with the absence
of onchocercal eye disease.  With Simulium ochraceum s.l., the vector in Guatemala and Mexico,
a minimum exposure rate of about 20 L3s is required to maintain an endemic transmission cycle.
This number comes from pre-treatment transmission studies carried out in communities with a
wide range of infection intensities, from hyperendemic to sporadic, and a force of infection
model applied to Guatemalan field data.  The important point here is the magnitude of the
difference; 20 is 5 times less than 100, and so we will have to work at least 5 times harder, or 5
times smarter to eliminate parasite transmission than eye disease.  We don't have good threshold
estimates for other new world vectors, but we can expect them to be lower for the unarmed
species such as S. exiguum than for S. ochraceum.  Pre-treatment ATPs range from a low of 18 in
El Jardin, Guatemala to 3888 with the unarmed S. guianense in southern Venezuela.  Low pre-
treatment ATP does not necessarily mean that transmission can be more easily suppressed.  In
northern Venezuela, the vector S. metallicum is a large unarmed fly with a painless bite that
readily becomes infected while feeding on people with low mf skin density.  In turn, community
mf loads are low with little eye or skin disease so people do not feel sick and consequently are
less interested in medication.

The impact of IVR programs on transmission can be assessed in relation to the two goals
articulated by the PAHO resolution, elimination of morbidity and elimination of parasite
transmission.  All countries are on track for elimination of morbidity by the year 2007, our target
date under the resolution.  This is no small achievement.  However, our subject here is
eradication, and a country-by-country review on the impact on parasite transmission reveals a
"good news, bad news" story.  In all cases where parasite transmission has not been interrupted,
it has been because some endemic communities within a focus have not received regular semi-
annual treatment, or that the depth of coverage has consistently been under 85% of the eligible
populations, or both.

The situation in Ecuador is "good news".  In 1997, the results of the first, in-depth evaluations
after 7 years of consecutive treatments on the Rio Santiago focus were published.  In
hyperendemic communities, children born after IVR treatment commenced had no infection
compared to 64% biopsy positives in 5 yo born before IVR.  Average coverage was 91.5%, and
this increased from 82.5% in 1990 to 95.0% in 1996 indicating that the endemic communities
were well prepared for the first dose, and that acceptance and popularity of the program (which
include other health interventions) increased over time.  The program was run by the Hospital
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Voz Andes and the Catholic Church and financed by charitable foundations.  The cost was about
$2 per treatment.

Last year, Ecuador again evaluated 3 sentinel communities in Rio Santiago after 11 yrs of IVR.
Vector infection was assessed by PCR with split samples run both in Quito and a reference lab in
UAB.  A total of 594 pools of 50 flies each were run (29,700 specimens) and none were positive,
either for heads (which would indicate L3 infection) or for bodies (which would indicate contact
with a mf positive person).  On the human side, untreated children born after IVR treatment
started had no skin infection, no nodules, and no mf in the anterior chamber.  Also, ICT test
results on children under 11 yr old were negative. These data indicate that parasite transmission
is suppressed in these communities and possibly throughout the Rio Santiago focus.    A word of
caution is required in extending these results to other areas. In Santiago, the most abundant
vector is S. quadrivittatum, an armed species with low vector competence.  Also, the cytospecies
of S. exiguum on Rio Sanitago is less efficient than the Rio Cayapa cytotype.

The necessity for semi-annual treatments during the first years of a program was shown in
follow-up studies of sentinel communities on the Rio Cayapas last year -- San Miguel, El Tigre,
and Corriente Grande. This area started treatments in 1996, with one treatment in 1996 and 1997,
semi-annual in 1998 and 1999, then one treatment in 2000.  Coverage ranged from 84 to 94%.
For El Tigre and San Miguel, we had pre-treatment infection data to compare with the year 2000.
In San Miguel, percent of S. exiguum with L3s was 0.9 pre-treatment and zero in 2000; for S.
quadrivittatum percent with L3s was 0.09 before and zero after.  For El Tigre, percent infection
in exiguum was reduced from 1.2% to 0.1, an 11 fold decrease; for quadrivittatum, it was 0.26 to
zero. For Corriente Grande, we had no baseline, but infection intensity in the human population
is greater than El Tigre and biting density of exiguum is higher, and percent of flies in the post-
treatment evaluation in year 2000 was 0.02%, with no L3s in quadrivittatum.  In terms of ATP,
L3 exposure was reduced from 518 per year to zero at San Miguel, El Tigre from 743 to 34, and
Corriente Grande to 17 L3s per year.

We can make some general statements from the Ecuador experience: (I) the coverage required
for transmission suppression can be obtained in an operational program. The key to success was
the use of local community health workers --- trained to take and update population census,
follow-up people who for some reason missed treatment, and to educate the communities about
the disease and the drug.  While the dollar cost per treatment was relatively low, developing,
training and assisting the community workers, however, took a large commitment of time by
program managers, time spent in the endemic areas; (II) Suppression of transmission with an
armed vector, in this case quadrivittatum, can be more readily accomplished than with an
unarmed species such as exiguum.  This confirms our hypothesis stated 1995, and bodes well for
Mexico and Guatemala where the only vector is ochraceum, an armed species ---- provided, of
course, that they can achieve the extent and depth of coverage required; (III) we need a better
understanding of the biological significance of low levels of L3 transmission, for example, is 17
L3s per year above or below the threshold for endemicity. Stated another way, are 17 L3s
enough to replenish the adult worm population and maintain the reproductive ratio (Ro) at > 1.0.

Colombia has one endemic community with a total at risk population of 1400.  Starting with the
second treatment round in 1997, coverage has consistently been above 85%.  Serologic and
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parasitologic examinations carried out last year were all negative. A PCR evaluation for fly
infection is scheduled this year.  Based on reported coverage, however, we expect that
transmission is suppressed in Colombia.

In the Amazon River basin areas of Brasil and southern Venezuela, the migratory nature of the
human population and difficult access makes regular treatments hard to achieve.  Brasil has
contracted with the NGO coalition to distribute IVR.  For the first year 2001, coverage was 76%
and 80% of the eligible populations for the 1st and 2 rounds, respectively.  Northern Venezuela
commenced regular treatments during the year 2000.  Their report to IACO 2001 indicates good
coverage during the first round of treatment within the year, but poor coverage on the second.  In
addition, not all endemic communities within a focus were treated.

Mexico has been treating with IVR longer than any other country.  The Oaxaca focus appears to
be suppressed; ICT tests in children were all negative.  Flies were collected during the last
transmission season and will be processed by PCR.  In the southern Chiapas, transmission is
continuing despite reported high levels of coverage.  The problem is that some communities do
not allow the onchocerciasis brigades to enter at all, and in others that are being treated, certain
groups refuse to participate.  Reasons include bad experiences with the nodulectomy brigades,
and they do not like being skin snipped or palpated for body nodules.  Another method of IVR
distribution must be developed to get the coverage required for suppression of transmission.

It's ironic that in Guatemala where we have the best understanding of transmission, an armed
vector with low competence for developing L3s, and the central offices of OEPA, we also have
the poorest record of coverage.  Health services were decentralized in the mid-1990's and IVR
distribution was disrupted for several years.  The program reported about 241,000 treatments in
2001 with less than 1/3 of the communities getting coverage > 85% .  In sentinel communities,
infectivity in flies showed continued and in some cases increased L3 transmission.  Like
southern Chiapas, the perception of onchocerciasis control is unfavorable in some communities.
MOH workers have many other responsibilities and onchocerciasis is low priority.  They also
need training in community-based health delivery, how to take and update census, health
education, etc.

In addition to IVR, several characteristics of onchocerciasis in the Americas make us cautiously
optimistic about elimination.  Onchocerca volvulus in the Americas is an "island" species
introduced some 500 years ago from Africa, and island species are more susceptible to the
pressures of extinction because their gene pools and populations are confined geographically and
not able to be replenished.   When a mf reservoir came in contact with a competent vector, a
transmission cycle was established and the disease became endemic.  Although the parasite was
introduced in many areas --- southern United States and Costa Rica, for examples, --- it became
established only in 6 countries, and the endemic areas are relatively small and stable.  Vectors in
the Americas include both unarmed and armed species.  The latter have relatively low vector
competence and parasite transmission relies on high biting density.  Simulium ochraceum is an
example where despite its occurrence throughout Guatemala, it reaches population densities
required for endemicity only on the western-facing slopes of the Pacific volcanos.  New world
vectors do not exhibit long-range migratory behavior, and generally stay within a few kilometers
of their larval development sites, so re-invasion of infective flies from distant endemic foci is



44

unlikely.  Also, transmission in the Americas is highly seasonal.  In Mexico and Guatemala,
transmission does not occur during the winter rainy season because the average life span of the
vector population is less than the intrinsic incubation period for L3s maturation.  In Ecuador,
little transmission occurs during the dry season because the rivers drop below the line of trailing
vegetation required for larval attachment.  This means that IVR treatments can be scheduled for
maximum effectiveness against transmission, the first at the beginning of transmission season
and the second 4 or 5 months later.  On the parasite side of the cycle, once transmission is
suppressed and the parasite is eliminated from a particular focus, the probability of re-
introduction of a new reservoir is also low.

Finally, all endemic countries have IVR programs up and running and OEPA is filling a pivotal
role with a regional perspective.  Proof that the strategy works and that semi-annual treatments
can be delivered by an operational program can be found in Ecuador and Colombia, but Mexico
and Guatemala need a new operational strategy for IVR delivery to insure the coverage required
for suppression of transmission.
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IMPACT OF IVERMECTIN TREATMENT IN OEPA COUNTRIES

M Sauerbrey

The Onchocerciasis Elimination Program for the Americas (OEPA), headquartered in
Guatemala, is the technical and coordinating body of a multinational, multi-agency coalition
which acts under the 1991 Resolution XIV of the XXV Directing Council of the Pan American
Health Organization (PAHO) calling for the elimination of all onchocerciasis morbidity from the
Americas by the year 2007.  OEPA has two primary goals, which are to eliminate new ocular
morbidity due to infection with O. volvulus in the region by 2007.  This is also stated as
elimination of onchocerciasis as a public health problem by year 2007, and to eliminate parasite
transmission in those countries or foci where feasible, for which no time limit has been specified,
with the exception of suppression of transmission aimed for 2007.  The program implementation
is through a coordinated regional effort, which embodies multiple partners, namely the
governments of the six endemic countries, PAHO, NGDOs, (TCC, LCIF, CBM), industry
(Merck), donors (IDB), universities and international agencies (CDC).  The elimination strategy
is based on semi-annual massive distribution of ivermectin to 85% of the eligible population in
all endemic communities to suppress disease transmission and prevent new eye disease
attributable to onchocerciasis. Once suppression has been achieved, it must be maintained for a
period of 10-15 years after which the adult parasite population, unable to replenish itself, will
have perished from old age.  At that point, the parasite transmission would be interrupted and
mass treatment could be halted without fear of recrudescence of the infection.

The geographic distribution of the disease in the Americas shows a peculiar patchy pattern
among six endemic countries (Mexico, Guatemala, Colombia, Ecuador, Venezuela, and Brazil)
and constituted by 14 different well circumscribed foci, which are stratified in three groups
according to current transmission status:  previously endemic where morbidity and transmission
may have been eliminated or suppressed by ivermectin treatment, not endemic (suspected), and
endemic where transmission still continues.

The majority of the endemicity is found among foci from Mexico, Guatemala, and Venezuela,
corresponding to 93% of all regions, and the other 6% distributed among Ecuador, Brazil, and
Colombia.  Following intense epidemiological field assessment in recent years, the estimates of
population at risk for onchocerciasis in the region have been reduced by 86% from 4,700,000
persons in 1995 (two years after the inception of OEPA in 1993) to 544,009 in 2001, with a
corresponding Ultimate Treatment Goal (UTG) of 440,861 eligible persons to receive treatment,
who are found distributed in 1969 communities of which 211 (11%) are classified as hyper-
endemic, 566 (29%) as meso-endemic and 1,192 (61%)  as hypo-endemic.  A total of 701,873
ivermectin treatments were provided in 2001 in the region, representing a 952% increase over
treatments in 1993, when the regional initiative was launched.  This figure constitutes 80% of the
regional goal of providing two treatments per year to all eligible people at risk.  Treatments took
place in all six endemic countries in the Americas but only Colombia, Ecuador, and Mexico
reached the 85% of their treatment goals.
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Monitoring of program impact is being accomplished by periodic in-depth evaluations in hyper-
endemic sentinel communities.  To document the elimination of morbidity, parasitological (Mf in
skin), and ophthalmological (MfAC and PK) indicators are used.  For suppression of
transmission, Polymerase Chain Reaction (PCR) is utilized to detect parasite DNA in pools of
black flies and lately, serology, measured by the oncho Immuno-Chromatographic (ICT)
antibody card Test to the antigen Ov 16 in children less than 6 years of age.

Results obtained with the serological test during 2001 surveys in different transmission zones in
six foci from Colombia, Ecuador, Guatemala, and Mexico, showed a strong indication that
suppression of transmission is being achieved in Oaxaca and Colombia and continue suppressed,
since initially declared in 1997 by Guderian et al, in the Santiago River in Ecuador.  Suspected
not to be endemic in both North Chiapas focus, Mexico as well as in the Huehuetenango area in
Guatemala, and lastly, confirmed still ongoing transmission in the case of the South Chiapas
focus.

As has been shown, regional treatment with ivermectin has reached a level were it is highly
likely to halt new ocular morbidity attributable to onchocerciasis by 2007.  However,
considerable technical assistance to countries will be required to satisfactorily document this
impact.

In preparation to carry out the task; it was resolved that certification of elimination must be done
on an objective basis, according to internationally accepted criteria and therefore, specific
guidelines required by the countries to monitor compliance of their programs, to document
interruption of transmission and ultimately, the cessation of ivermectin treatments and
Certification of Elimination were the subjects at a WHO conference celebrated in Geneva in
September 2000 where the final guidelines and Criteria for Certification of Elimination of
Human Onchocerciasis to rule of the process were finally established.  The process comprises
basically four well-defined phases: Pre-suppression, Post-suppression, Pre-certification, and
Post-endemic surveillance phase, after final Certification is granted.

In conclusion, the goal of complete suppression of O. volvulus transmission throughout the
Americas is feasible and ambitious; and success will depend largely on gathering the political
will and financial resources for a sustained, high level of treatment coverage, twice per year, in
all endemic communities.



47

Dr. Brian Duke
Difference between vector-parasite complexes relevant to elimination

ONCHOCERCA-SIMULIUM VECTOR-PARASITE COMPLEXES –
THEIR RELEVANCE TO ERADICATION

B Duke

A. The situation in Africa

The concept that there are different Onchocerca-Simulium complexes, each confined to a
particular geographical or bioclimatic zone, originated in West Africa as a result of research into
the reason why blinding onchocerciasis was much more prevalent in the savanna zone than in the
forest zone.

In the Republic of Cameroon, when ‘forest’ S. damnosum s.l. (now known to be S. squamosum)
were fed on carriers of O. volvulus microfilariae from the forest zone, the microfilariae (mfs)
were ingested in large numbers and developed well into infective larvae; but, when ‘Sudan-
savanna’ S. damnosum s.l. (now known to be S. damnosum s.s. and S. sirbanum) were fed on
these same volunteers, although their mfs were ingested in large numbers, only very few or none
of them developed into infective larvae.  The reverse was true in feeding experiments on O.
volvulus mfs carriers from the Sudan-savanna zone.  Their mfs would develop well in the
‘Sudan-savanna’ species of Simulium but scacely at all in the ‘forest’ species. In Cameroon the
dividing line beween the two bioclimatic zones was fairly sharp and coincided with the
escarpement just north of Ngaoundere which descends on to the Benue Plain (Duke, Lewis and
Moore, 1966).

Further work on the same lines was then carried out in forest and savanna sites at various places
in Malabo, Nigeria, Sierra Leone, Burkina Faso and Senegal; and later by OCP workers in Cote
d’Ivoire and eslewhere..

Later, work in experimental rabbits showed that the mfs of the ‘Sudan-savanna strain’ of O.
volvulus were very much more pathogenic than those of the ‘forest strain’ when inoculated into
the cornea (Duke & Anderson, 1972), whereas there was no detectable difference between the
pathogenicity of the two strains when inoculated into the ocular fundus (Duke & Garner, 1976).
Probably this was a major factor leading to the greater prevalence of anterior segment
onchocercal blindness in the hot savanna regions of West Africa.

The above findings provided a certain impetus to the establishment of the Onchocerciasis
Control Programme in the Volta River Basin, for they implied that control measures could be
applied in the savanna zones of the proposed control area, where onchocercal blindness was a
severe socio-economic problem, without any great danger of reintroduction of infection from the
forest zones to the south.
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However, it must be remembered that the division between the between the “severely blinding”
onchocerciasis of the hot West African savannas and the “less blinding” onchocerciasis of the
forest is neither absolute nor always very sharp.  Although the identification of persons,
communities and areas, in which the different strains are found, has been made much easier with
the development of DNA probes and PCR techniques, which can distinguish between the two
strains of parasite with a high degree of confidence (Zimmerman et al., 1992), we are not dealing
with impenetrable barriers. This for four reasons:-.

1. The inability of the mfs of one strain to develop in vectors of the other strain is not absolute.
A small proportion of mfs can succeed in crossing the barrier and, in the presence of appropriate
selection pressure, this proportion may increase.

2. There are some vector species, notably S. soubrense, which will permit the development of
mfs of either strain.

3. The increasing development of West African countries over the last few decades has resulted
in much more frequent migration of workers and their families between the savanna and forest
zones, thus tending to break down the barriers between these two main parasite-vector
complexes.

4. Destruction of the forest environment by agriculture and logging may lead to the spread of
the savanna vectors southwards.

It must also be remembered that, at present, virtually all we know about Onchocerca-Simulium
complexes is limited to West Africa.  We have no knowledge of the complexes that exist in
Central and East Africa, where there are many vectors of the S neavei complex as well as other
members of the S. damnosum complex and, in the Democratic Republic of the Congo, doubtless
S. albivirgulatum will also have to be considered.

In the present author’s opinion, it is unlikely that our knowledge of different Onchocerca-
Simulium complexes in Africa will facilitate either the zonal elimination or the ultimate
continental elimination of the parasite to any useful extent.

B. The situation in the Americas

The early work on Onchocerca-Simulium complexes in Africa was later extended to the
Americas by way of investigations first in Guatemala (De Leon & Duke, 1966) and later in
Venezuela (Duke, 1970).

One remarkable thing about the Guatemalan vectors (S, ochraceum being the main vector, with
S. metallicum and S. callidum as subsidiary vectors) is their ability, when taking a blood-meal, to
attract large numbers of mfs (increased by a factor of  X 10-25) of the Guatemalan strain of O.
volvulus towards their mouth-parts.  This attraction, which probably results from some attractant
in their saliva, means that S.ochraceum can ingest sufficient mfs to counteract the loss of the
large numbers of them which perish from damage when passing through the cibarial armature.
S. metallicum and S. callidum,  which have no armature, usually succumb to the vast numbers of
mfs which they ingest as a result of this attraction.
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By contrast, this salivary attractant is not effective on the mfs of either the West African ‘forest’
or ‘Sudan-savanna’ strains of O. volvulus. Very few mfs of the West African ‘forest’ strain
ingested by S. ochraceum developed to infective larvae, and none of those of the West African
‘Sudan-savanna’ strain reached the L3 stage.

In northern Venezuela, the main vectors, S. metallicum and S. exiguum, both exerted a marked
attraction on mfs of the Venezuelan strain of parasite and a reasonable proportion of the ingested
mfs completed their development.  By contrast the mfs of the two West African strains did not
respond to this salivary attraction and no mfs of either African strain managed to develop to
infective larvae in these vectors (Duke, 1970).

    In terms of the effect of these findings on the Onchocerciasis Elimination Programme in the
Americas (OEPA), I believe we may say as follows:-

1. The numbers of O. volvulus-infected Africans who are likely to travel to and settle in any
of the onchocerciasis endemic areas in the Americas must be totally insignificant, as must any
traffic in the reverse direction.  Any infected Africans who did reach the endemic areas in the
Americas today would not constitute a serious source of infection owing to their poor
development to L3s.  Thus there is little danger of re-infection from Africa.

2. It is probable that the complex in Guatemala and that in Chiapas, Mexico are the same,
but they may perhaps be different from that in Oaxaca, and may well be different from those in
South America. Likewise those in Ecuador, southern Venezuela and Brazil may be the same but
different from those northern and eastern Venezuela. As far as I can ascertain, there has been
very little work done on the compatibility or otherwise of the Onchocerca-Simulium complexes
in the different infected countries in Latin America.  Only the recent work of Basañez et al.
(2000) indicates that there is little or no possibility of the strain of O. volvulus from north-eastern
Venezuela, which is transmitted by S. metallicum, being transmitted by the main vector in the
Amazonian region, S oyapockense.

3. Further investigations to determine the identity and range of the various complexes in the
Americas might be useful in the context of the OEPA. Elimination of the foci in South America
might be feasible, one by one, with minimal risk of re-infection from adjacent foci; and the same
might be true for Guatemala/Chiapas and Oaxaca in Central America.
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VECTOR SPECIES, TRANSMISSION EFFICIENCY,
AND FREQUENCY OF IVERMECTIN TREATMENT

E Cupp

Transmission of Onchocerca volvulus is greatly influenced by phenological factors which shape
population size and activity of Simulium vector species.  Rainfall and temperature are important
and collectively regulate abundance and flight activity of vector black flies; temperature also
influences rate of development of the parasite in the vector (extrinsic incubation period).

Intrinsic physiological and behavioral factors control vector competence and regulate Simulium
infection and subsequent transmission efficiency. Host selection by local vector species is a key
feature in determining the number of O. volvulus infective stage larvae (L3s) transmitted per
person per year.  Many vector taxa in the S. damnosum, S. exiguum and S. metallicum species
complexes are zoophilic and may blood-feed indiscriminately on humans and ungulates. This
process often results in the transmission of O. volvulus L3s to cattle (a dead-end host) and
diminishes the annual transmission potential of the parasite to humans (zooprophylaxis). Other
vector species such as S. ochraceum (species A) are highly anthropophilic and feed recurrently
on human hosts.  The presence of a cibarial armature in some vectors is a critical morphological
feature that serves to regulate the number of microfilariae ingested in a blood-meal that remain
viable and can infect the thoracic musculature of the fly. This chitinous structure occurs in the
foregut and is sharply toothed in several New World vectors, damaging a large percentage of
ingested microfilariae as they pass posteriorly in the blood-meal. As a result, many microfilariae
are killed or incapacitated and unable to penetrate the midgut. Important vector species that are
“armed” (possess the cibarial armature) include S. ochraceum, S. oyapockense s. l., and S .
quadrivittatum.  For this reason, these species have a higher infection threshold than “unarmed”
vectors and transmission is most readily affected when the community microfilarial load
(CMFL) is altered by drug treatment. Black flies also have active immune responses  which
rapidly kill O. volvulus microfilariae as they enter the hemocoel. Clearance is rapid and killing
presumably occurs as a result of secretions by hemocytes (“leucocytes”).  While somewhat
controversial, recent laboratory evidence has confirmed early field observations that black fly
saliva contains one or more substances that serve to orient microfilariae to the bite site and
enhance vector infection. Other salivary factors such as very powerful vasodilators may also
cause microfilariae to be swept into the hematoma created by the vector where they are ingested
in the blood-meal.

As a result of the interactions between these climatic and intrinsic factors, variation occurs in the
natural infection rate (mean number of O . volvulus L3s per vector species) in different
onchocerciasis foci. In populations of forest species of S. damnosum, the mean number of L3s per
infective fly ranges from 4-6 depending upon the cytotype/cytospecies but just over 2 L3s in the
major savanna vectors (S. damnosum s. s. and S. sirbanum). Simulium ochraceum, the principal
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vector in Guatemala and southern Mexico, typically has 1 .5 - 2.0 O. volvulus L3s per infective
fly whereas S. exiguum, a vector in northern South America has 3 L3s.

Introduction of ivermectin (Mectizan) into the community quickly alters this steady state system.
Because of its rapid microfilaricidal properties, there are immediate changes in parasite uptake
by the vector which subsequently down-regulate transmission of L3s. In a hyperendemic savanna
focus in Ghana, a single annual treatment reduced the CMFL by 68-78%, resulting in an  initial
reduction in transmission of 65-85% during the first 3 months after treatment. However,
transmission resumed at an unacceptably high level after a year. In a forest focus in Liberia
where S. yahense is the vector, two treatments were given at annual intervals, reaching 58 - 60%
of 14,000 people in the study. The number of infective flies with O. volvulus L3s was reduced by
81.7 - 89.3%. Two years following treatment, there was a 44.5% reduction in age-adjusted
incidence of children 7-12 (from 16.4% to 9.1%).

Because the skin is re-populated with sufficient O. volvulus microfilariae to infect most vectors
at roughly six months post-treatment, biannual ivermectin treatments of some communities in
Latin America have been shown to suppress vector infection and interrupt transmission. In
Guatemala, the effects of treatment at roughly 6 month intervals in 3 communities/transmission
zones was followed over a 30 month period. Coverage averaged 80.7% of the eligible population
and community microfilarial densities were reduced to levels considered to be at or below the
infection threshold for S. ochraceum, the vector. Thus, this regimen affected a large segment of
the population that had previously been infective for the vector population but was no longer
able to infect flies. As a result, there were significant changes in transmission parameters, i. e.
flies with infective stage larvae/number of L3s per 1,000 parous flies, the mean infective biting
density, and mean transmission potential. In one location (Los Andes), transmission was
blocked. In the Rio Santiago focus in Ecuador, a strategy was used of giving ivermectin
treatments biannually in hyperendemic communities and annually in meso- and hypoendemic
communities over a 5 year period. Coverage levels were high, with 81.9% to 98.0% of those
eligible receiving the drug at each treatment interval, resulting in a reduction in the geometric
mean microfilarial density from 19.3 mf/mg of skin to 0 (as indicated by biopsies from 120
randomly selected individuals). The overall rate of infection of the vector population, a mixture
of S. exiguum and S. quadrivittatum, declined from 1.1% in 1989 to 0.08% in 1996. No new
nodules were detected in the population after 1994 and no children under 5 became infected over
the observation period, suggesting that transmission of O. volvulus was interrupted in the study
area.
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LONG DISTANCE MIGRATIONS OF BLACKFLIES AND ONCHOCERCIASIS TRANSMISSION

P Guillet

Onchocerciasis control, elimination or eradication?

Long distance migrations of blackflies will be discussed in this paper in relation to transmission
and to the possible elimination of Onchocerca volvulus. An effective control of onchocerciasis
transmission by repetitive treatments with ivermectin has been achieved in few foci, both in
Africa in the Onchocerciasis Control Programme area (OCP) and in the Americas, especially in
isolated foci. By extension, the possibility of eliminating onchocerciasis through a massive effort
on ivermectin distribution  has been envisaged.

Elimination of onchocerciasis as a disease of public health and socio-economic importance has
been the primary objective of the African Programme for Onchocerciasis Control (APOC). In the
APOC strategy which is based on community directed treatment with ivermectin (CDTI), there is
no direct attempt to control transmission of the parasite Onchocerca volvulus except in very few
isolated foci where durable elimination of the vector(s) is being envisaged. Another Programme
for Elimination of Lymphatic Filariasis (ELF) has recently been launched, also based on
community treatment using a combination of two micro-filaricidal drugs, ivermectin and
albendazole. Both APOC and ELF almost entirely rely on a drug delivery strategy with a clear
objective of disease control. Although not clearly stated, it is felt that this strategy could lead to a
complete interruption of transmission if it is systematically and long enough implemented and, as
a consequence, to the elimination of the respective parasite populations. The operational
objective of OCP when it was launched in 1974 was to interrupt transmission of O. volvulus long
enough (at least 15 years) through systematic and uninterrupted vector control operations in
order to achieve a complete elimination of the parasite reservoir in human populations in the
Programme area and to ensure there will not be recrudescence thereafter. Elimination is also the
objective of the Onchocerciasis Elimination Programme in the Americas (OEPA), based on
ivermectin distribution.

Blackfly, a long range flyer

To be effective, a strategy based on transmission control of parasites such as O. volvulus and W.
bancrofti has to take into consideration a number of essential factors relating to vectors, among
which their flight range and in the case of blackflies, their ability to migrate over long distances.
This is of key importance, especially in Africa with onchocerciasis vectors belonging to the
Simulium damnosum complex. Soon after OCP started in 1975 in West Africa, it appeared that
the objectives could not be achieved in treating only the Programme area because of seasonal
migrations of blackflies and reinvasion of treated river basins by vectors coming from untreated
surrounding areas. Migration of insects over long distances was already well known (Johnson,
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1969), especially for adult stage simuliidae due to their strong flight and dispersive ability
(Hocking 1953) and Simulium damnosum s.l. (Hitchen & Goiny, 1966, Ovazza et al., 1967). This
ability was later confirmed by lab studies on flight performances of O. ornata, a palearctic
blackfly species (Cooter, 1982) and several species of the S. damnosum complex from West
Africa (Cooter, 1983). Blackflies are characterised by the presence of strong and very developed
thoracic muscles, important amount of abdominal fat body at emergence and ability to feed on
plant nectar. These three attributes are in favour of long range flight capacity. Another important
factor involved is their longevity since migrations take time. It was already estimated long ago
that life duration of S. metallicum, a blackfly species from Central America was quite long (30 to
85 days, Dalmat, 1952). More recent data from West Africa have confirmed this figure (see
below).

Seasonal migrations of blackflies are very difficult to detect in natural conditions. In practice, it
is possible only if very large areas including several contiguous river basins are simultaneously
submitted to systematic larviciding and if local production of vectors is fully interrupted. In these
conditions, reinvasion by adult flies coming from outside these areas can be detected through
exhaustive entomological surveys to ensure there is no local production of flies inside the treated
area. This was possible only in the framework of large control programmes such as the OCP with
adequate logistic. Some tools such as radio-labelled isotopes or molecular markers could not be
used or have been available only very recently. It is unclear in the current state of knowledge
whether molecular markers may be of practical help in investigating long distance migrations in
blackflies considering complexity of migration patterns and long distances involved.

In the OCP area, a number of detailed studies over a 10 years period involving dozens of
consultants and professional entomologists was necessary to document long distance migrations
of blackflies, especially in the western area of the Programme. These studies were carried out
with the objective to better document epidemiological impact of vector migrations, to identify
the geographical origin of reinvading flies and to propose solutions to prevent this phenomenon.
The origin of reinvasion was first investigated at the end of the seventies through comprehensive
entomological surveys carried out simultaneously in different river basins and at regular intervals
between the reinvaded areas and the suspected source of reinvasions. In Côte d’Ivoire and
southern Burkina, because of the remarkable correspondence in time and space between blackfly
“waves”, it was shown that savannah species of the S.damnosum complex were able to fly over
very long distances, up to 500 km, when assisted by winds (Johnson et al., 1985). It was also
assumed that flies were migrating by successive flights over a 4 to 5 week time. Most of the flies
reinvading treated areas were very old with exhausted fat body and a remarkably high level of
infestation by O. volvulus (Walsh 1977, Garms et al,. 1979).

In the north-western part of the Programme, another approach was developed in treating,
progressively and westwards, all potential sources of reinvasion and closely monitoring the
impact on fly populations and transmission in both treated areas and suspected sources. These
investigations, again complex, long and costly, have unambiguously confirmed the very long
flight range of savannah species of the S. damnosum complex, flies migrating from northern
Sierra Leone to western Mali in about 4 to 5 weeks with an average of 15 to 20 km/day (a
summary to be found in Baker et al., 1990). Simultaneous investigations based on pteridine
concentration in the head of reinvading flies confirmed they were very old, from 30 to 60 days
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(Cheke et al., 1989). The main reinvasion axis in the western part of the OCP was from the
South West to the North East at the beginning of the rainy season, monsoon winds playing a
major role in the dispersal of flies. Reinvasion occurred as well in the eastern part of the OCP but
with different seasonal and geographical patterns (Garms et al., 1982, Cheke & Garms, 1983).

Circumstantial migrations of blackflies based on climatic events also occurred at a smaller scale
and different times in the year, implying different species, e.g. forest species migrating in 1986
from central Côte d’Ivoire to savannah areas of south-western Mali. Some migrations also occur
in forest areas: S. sanctipauli migrated from southern Côte d’Ivoire to southern Ghana, importing
insecticide resistance in river basins far from the OCP area which had never been submitted to
any larviciding. Long range migrations in savannah areas also had a significant impact on the
dynamics of insecticide resistance. Before OCP extensions, yearly massive introduction of flies
free of resistance genes originated from non treated areas had an effect of “dilution” of resistance
in vast treated savannah areas. When insecticide treatments started in the extension areas,
resistance developed locally almost immediately although the vector populations were fully
susceptible just before treatments started. The likely explanation found at that time was the
occurrence of reverse migrations from the initial Programme area. This reverse migration was
later confirmed when OCP stopped vector control operations in northern parts of the original
Programme area. It was occurring mainly at the beginning of the dry season, bringing flies from
non treated areas the north-east to treated areas in the south-west, assisted by northern cold winds
(“Harmattan”). This phenomenon was also suspected when important populations of savannah
flies were collected in evergreen forest areas of Liberia (Garms, 1987).

Migration over long distances is an essential adaptive phenomenon which allows blackflies to
quickly colonise vast savannah areas where rivers stop flowing for several months during the dry
season. The same monsoon winds which bring rains also bring blackflies more or less
simultaneously, first females being detected the same day when first rains fall and rivers start
flowing (Bissan, pers. comm.).

Operational significance of long range migrations of vectors in the OCP area

When migrating over long distances, onchocerciasis vectors bite humans either before migration
started or on their way, getting infected with O. volvulus. The yearly and massive introduction of
new young parasites in the treated areas through reinvasions made virtually impossible to
eliminate the parasite reservoir in these areas. This is why OCP, originally planned for 15 years
in 7 countries (654,000 km2) area, had to extend its vector control operations to 11 countries (1.2
million km2). These important extensions including all known and potential sources of
reinvasion were treated with the same objectives and the same strategy as in the original area.
This approach was the only realistic option for making the whole OCP area free of the blinding
species of the parasite O. volvulus and to prevent reintroduction of this parasite by long distance
migrating vectors. Instead of ending around 1992, OCP operations had to be extended over an
additional period of 10 years, up to 2002.
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Blackfly migrations and prospects for onchocerciasis elimination

In Africa, where O. volvulus and its vectors have long co-evolved, most of the vector belongs to
the S. damnosum complex. The distribution of the disease corresponds to the distribution of the
vectors. There are almost no areas colonised by vectors which are onchocerciasis free. This wide
distribution and close overlapping of vectors and parasites might at least partly result from ability
of vectors to disperse and transmit the disease to almost all riverine populations exposed to the
bites of the blackflies. In contrast, in the Americas, introduction of onchocerciasis with slaves
from Africa has been recent and distribution of the disease is very focal with a much wider
distribution of the vectors. In addition, in comparison to Africa, vector species are more
diversified.

Because of the very focal distribution of onchocerciasis in the Americas, the small size of
affected communities, especially in Mexico, Guatemala, Colombia and Ecuador, migration of
flies, if any, do not constitute a priori a potential problem in transmission control. With good
coverage and timing in ivermectin distribution, interruption of transmission has already been
achieved in some foci and prospects for onchocerciasis elimination in those foci are good. The
situation might be more complicated in forest areas of Venezuela and Brazil. Due to
inaccessibility to and dispersion of affected human communities, relatively little is known about
transmission, the bio-ecology of vectors, their distribution and ability to migrate.

In Africa outside the OCP, because of the complexity, the logistic implications and cost of such
studies (see above), it will be very difficult to study long distance blackfly migrations and to get
a clear picture of this phenomenon and its epidemiological significance. Nevertheless, in all
areas where vectors belong to the S. damnosum complex, it is reasonable to assume that such
migrations do occur comparable to that observed in West Africa, especially in savannah areas. If
a transmission control strategy is implemented with the long term objective of onchocerciasis
elimination, it is essential to take into consideration migration factors and its epidemiological
consequences, including the introduction of parasites in areas under control. The APOC strategy
is almost entirely based on disease control through a yearly CDTI. This strategy, as it is
implemented, is unlikely to result in effective and sustainable control of transmission. Some
vector control interventions have been envisaged in areas where local elimination of the vector(s)
appear to be achievable. When these vectors belong to the S. damnosum complex and in the
absence of well documented migration studies, it will be difficult to assess the feasibility of this
approach. E.g. Bioko island in Equatorial Guinea where possible elimination of the vector(s) is
currently envisaged is located about 50 km from the main land, a reasonable flight distance for
the local vector. Last, when assessing prospects for onchocerciasis elimination, blackfly
migrations are not the only factor to consider since long range and sometimes massive human
migrations do also occur throughout the whole of Africa (this aspect is not discussed in this
paper).

In the OCP area, despite extensive entomological studies carried out during more than 20 years,
it is difficult to assess precisely the respective role of vector and human migrations in the
persistence of a number of residual parasite populations after more than 20 years of intensive and
continuous vector control, combined for several years with a good ivermectin coverage. If a
complete elimination of the parasite populations has not been achieved by the OCP, combining
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massive vector control and good coverage of ivermectin treatment, it is very unlikely it can be
achieved through ivermectin distribution alone, especially when implemented by national health
structures struggling with shortage of staff and resources.

Long range migrations of blackfly populations in Africa are a good indication of their adaptive
response to environmental changes, either seasonal or long term changes such as deforestation. It
is also an important factor involved in the long term co-evolution of vector, parasite and human
populations. The situation of onchocerciasis before any intervention could be seen as very
“stable” in comparison to malaria. Controlling the disease at a continental level in Africa through
CDTI is the ambitious but achievable objective of the APOC. Interrupting transmission and
bypassing adaptive response of the vectors would be quite another challenge.
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Onchocerciasis control: Feasibility of elimination as a public health problem and of
elimination of transmission.
Dik Habbema, Gerard Borsboom, Nico Nagelkerke

Introduction
In order to improve our understanding of the epidemiology of onchocerciasis in the river basins
of the OCP area included in this study, and to assess the impact of the interventions, both
empirical data from river basins under long term (exclusive) ivermectin treatment and computer
simulations using the ONCHOSIM simulation program were carried out.
A key question was whether ivermectin by itself could lead to elimination in the low to meso
endemic areas covered by this study. Elimination would justify cessation of treatment after
elimination has been reached. Thus, it is important to know whether recrudescence can be
expected after cessation of ivermectin treatments. If so, control may have to be maintained
indefinitely.
An additional advantage of the simulations is that it provides a further validation of
ONCHOSIM. How do the ONCHOSIM predictions compare to the OCP experience?
ONCHOSIM was developed on the basis of data from the Ivermectin community trial in
Asubende, Ghana. A correct prediction of the course of epidemiological parameters under the
impact of ivermectin treatment would provide additional credibility to this tool and improve its
reliability in guiding post-OCP control measures.

Methods
The epidemiological data was taken from OCP databases. Basins controlled by ivermectin mass
treatment only were studied. These basins were: the Faleme, Bafing, Bakoye, and Baoule basins
with a yearly ivermectin treatment, the Rio Gambia with a 6-monthly treatment, and the Rio
Corubal with a 3-monthly treatment schedule (Figure 1).

The ONCHOSIM microsimulation program was used. The quantification of ivermectin
effectiveness was based on the community trial in the Asubende basin. ONCHOSIM parameters
defining the endemicity level were generally chosen to reflect both observed entomological
parameters and observed epidemiological parameters. Ideally these should be consistent, i.e.
when ABRs etc. as observed are used in ONCHOSIM, epidemiological output (prevalence,
CMFL) should mimic observed values. However, discrepancies between biting rates experienced
by fly catchers and inhabitants of villages may lead to apparently inconsistent results. Other
factors that could lead to discrepancies between entomological and epidemiological parameters
are vector properties and behaviour. While in Asubende S. damnosum s.s. dominates and
zoöphily of vectors is generally low, this may not be the case in all of the basins included in this
study. In fact, there are indications (differences between ATP and adjusted ATP) that zoöphily in
the Gambia basin may be higher than in Asubende, and we have chosen to take a slightly higher
value of this parameter in that basin. However, precise estimates of zoöphily appeared hard to
come by as most pertinent entomological observations were made during the period that
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ivermectin was used. Use of ivermectin automatically increases the ATP / adjusted ATP ratio, as
human bites should infrequently lead to ingestion of mf, while animal bites can still be
successful.
Our approach was not to simulate all available data points in all basins, but rather select a
‘typical’ village from each of the basins included in the study. Coverage rates of ivermectin
treatments were taken as reported. Generally, therapeutic coverage rates were taken as ‘the’
coverage rates, but adjusted slightly downwards when geographical coverage was poor. This
choice was motivated by the assumptions that 1) villages with epidemiological data should
generally have been included in the geographic coverage, and 2) first line villages presumably
have a high probability of being covered, and a low geographic coverage is presumably due to
the omission of second and third line villages. We have no hard evidence that these assumptions
are correct, but they seem reasonable.

Where uncertainty regarding coverage levels existed (e.g. geographical coverage variable or
low), simulations were repeated with different coverage levels. This was also done to explore
whether recrudescence in the Corubal focus might have been caused by unduly optimistic
reported ivermectin coverage rates. Another uncertainty factor was the macrofilaricidal effect of
ivermectin when ivermectin was used more than once annually. Thus, instead of a 35%
macrofilaricidal effect per treatment, simulations assuming a 19% macrofilaricidal effect were
also done. As the four basins of Faleme, Bafing, Bakoye, and Baoule were very similar in terms
of epidemiology and intervention strategy; they were treated as one basin from the point of view
of ONCHOSIM simulations.

Recrudescence occurred in the Rio Corubal focus. This appeared hard to attribute to
‘endogenous’ recrudescence, i.e. due to residual infection in the communities for which
epidemiological data were available. Thus immigrating infected flies were assumed. These flies
could have become infected in nearby villages that had poor coverage or have migrated from
non-local foci.
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Fig. 1: Map showing the locations of the basins studied within the area covered by the OCP.

In vitro predictions of elimination
The purpose of the study by Winnen et al. [1] was to estimate, using ONCHOSIM simulations,
the duration of ivermectin mass treatment programs achieving elimination of infection with a .99
probability under different pre-control endemicity and coverage levels. To this end, a very large
number of simulations were performed (based on the standard Asubende quantification) for an
equally large number of combinations of endemicity levels, coverage levels, and durations of
treatment. For each simulation it was noted whether elimination was achieved or not. This last
variable was then used as the outcome variable in a logistic regression model, having endemicity
level, treatment coverage, and treatment duration as predictors.  This model allowed us to
estimate the conditions (i.e. specific combinations of endemicity level, treatment coverage and
duration of treatment) under which it is possible to achieve elimination with a .99 probability.
In Figure 2, an example of the output of an ONCHOSIM run is shown. In Figure 3 it is shown
how the required duration of ivermectin mass treatment varies with pre-control CMFL level, and
with treatment coverage.

Fig. 2: Output of an ONCHOSIM simulation run. Results of 10 annual dosages with a coverage
of 65% in a village with pre-control CMFL of 30 mf/ss (Winnen et al. [1]).
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Fig. 3: Example of how the required duration for a .99 probability of elimination, varies with
CMFL and coverage level. Annual treatment intervals and medium individual variation in biting
rates were assumed (Winnen et al. [1]).

Results
The ONCHOSIM results will be assessed in the discussion section. The trends in prevalence are
described and discussed in detail in Borsboom et al. [2].
Faleme, Bafing, Bakoye, and Baoulé basins
These are geographically very similar basins that are located in the Western Extension across the
borders between Mali, Senegal, and Guinea, and that have comparable ivermectin treatment
regimens.  These were all mostly meso endemic foci  with  pre-control prevalences around 60%
(range 10-80%), and  pre-control CMFL values around 10 mf/s.  Annual ivermectin mass-
treatment started in 1989. The therapeutic coverage was around 80%. The geographic coverage
may not have been very good. There were very favourable trends in the epidemiological
indicators with CMFL reaching values near zero in 2001, with prevalences decreasing below
10%.

Rio Gambia basin
This basin is located in the savannah area in eastern Senegal and northeastern Guinea. It was a
hypo to meso endemic area, with pre-control prevalences ranging from 60% to 80%, and pre-
control CMFL values > 30 mf/s in only two villages. 6-Monthly ivermectin mass-treatment
started in 1989. The therapeutic coverage around 80%. There were favourable trends in the
epidemiological indicators, although low prevalences seem to persist in a few villages.

Rio Corubal basin
This basin is mainly located in Guinea Bissau, close to Rio Gambia focus. It was a meso
endemic area with pre-control prevalences from almost zero to 80%, and with pre-control CMFL
values mostly <30 mf/s. 3-Monthly ivermectin treatment started in 1991, but stopped in 1996.
Therapeutic coverage increased from 60% at the start to 80%. There were very favourable trends
in epidemiological parameters until 1997, but recent data suggests prevalence is increasing again
in some villages.

Discussion
Both empirical data and ONCHOSIM simulations confirm that very low levels of prevalence
CMFL and transmission can be reached. ONCHOSIM appeared to be broadly in line with
empirical data in that it appeared to be able to reproduce observed trends accurately. On the basis
of observations it is hard to distinguish macrofilaricidal effects (35% or only 19%?) or
ivermectin coverage levels (as reported or 10% or 20% less) as predicted trends appeared to be
somewhat insensitive to these choices. Despite this positive result, recrudescence was observed
in the Rio Corubal basin following a cessation of treatment of several years as a result of the civil
war. It is unclear what caused this recrudescence. ONCHOSIM was able to predict this
phenomenon if immigration of infective flies was assumed. However, other factors not explored
in our simulations may account for this phenomenon as well (e.g. immigration of infected
humans).
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According to ONCHOSIM, elimination of transmission from the basins included in this study is
possible. However, the ‘in vitro’predictions of ONCHOSIM are made under assumptions which
are favourable for elimination (as regards geographical coverage, neighboring areas, and
resistance). Experience in the Rio Corubal, not a highly endemic area, are a warning against
undue optimism, nevertheless. Either, it may not be possible to eliminate all residual foci or
prevent invasion of infective vectors or humans, or – alternatively, the biology of low level
infections has not been modelled correctly in ONCHOSIM. This needs further exploration.
In view of these findings it would seem too optimistic to conclude that elimination of
transmission is possible with ivermectin alone. The excellent results in bringing prevalence and
CMFL down, do justify the conclusion that – provided no resistant strains emerge – morbidity
can be controlled. Thus, elimination of onchocerciasis as a public health problem with periodic
ivermectin mass treatments is definitely possible. For this objective, empirical evidence does not
suggest that 6-monthly treatments have any advantage over annual treatments, provided that
annual treatments have a high geographical and therapeutic coverage. The advantages of more
frequent treatments as suggested by ONCHOSIM are partially based on an extrapolation of
macrofilaricidal effects observed at annual treatments to 6-monthly treatments. It is unclear
whether this extrapolation is justified.  Thus, as yet, annual treatments seem totally adequate.
Elimination of the infection will have to await the introduction of other control measures.
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Prediction of feasibility of onchocerciasis eradication

John B. Davies, Liverpool School of Tropical Medicine

SIMON-a  is a microsimulation model designed to emulate the transmission dynamics of

onchocerciasis with special regard to the situation in the Americas.  It is intended to mimic any

chosen community and the vectors associated with it and follow  the  progress of the disease in that

community as it is subjected to variable regimes of ivermectin distribution.

To simplify the model's construction and to make its inner workings more transparent, it is

built using an array of 45 columns by 80 rows using the Microsoft Excel® spreadsheet.  Thus the

information held on each person in the community is contained in a single cell, and the

spreadsheet's built-in functions are used to accumulate totals and products such as prevalences that

are used to quantify the state of the disease.  It also simplifies the production of graphical output

such as charts.  Data is accumulated in tabular form so that the user can copy columns of

information to other sheets to make any calculations required. Changes to the array which simulate

the passage of time are driven by hidden instructions written in Visual Basic for Applications code

(otherwise known as Macros).

SIMON-a operates in  six-month time units called cycles or semesters. Two cycles

constitute a year. At the start of each cycle there is the option to distribute ivermectin to a variable

proportion of the human population, the effect of this on skin mf. densities is computed, and flies

permitted to "bite" randomly selected members of the community in each of five age classes. Any

infected flies and their mf. are accumulated over each cycle and then placed in a separate

"incubator" array which is updated every  6 month cycle until mature female Onchocerca have

developed about 18 months later. Male worms are then rejected and the remaining female worms

are then distributed randomly back to the human population. At the end of each cycle, numbers of

worms, infected persons, mf loads and prevalences etc. are recalculated.  At the end of each year all

humans and the worms they carry are subjected to an annual probability of survival, and those that
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survive, are aged by one year, and new humans are "born" and enter the array.

Fig. 1

Data on each person in the community is held

in coded form in a single cell of the array.

Fig.1 shows the full information coded for a

single female, aged 21 who is not pregnant, was

first infected at age 3, and has received 7 out of

a possible 8 doses of ivermectin.  She is

carrying 4 living female O. volvulus aged 4, 6

& 8 years, one of which is producing mf. She

has one or more nodules and 1 mf/mgm of skin.

She is negative for both punctate keratitis and

mf. in the anterior chamber of the eye.

Objectives of the Current Project.
1.  To mimic the dynamics of onchocerciasis in a single hyperendemic Ecuadorian community

which has received ivermectin regularly since 1991.

2.Compare the output from the model, such as +ve biopsy prevalence, with data obtained from the

field.

3.If SIMON-a predicts the field data with reasonable accuracy, examine the effect of various future

scenarios

4.Extend the use of the model to other communities in the Americas

Assumptions and Limitations.

 In order to make the model manageable the following assumptions were made:

1.Human and vector populations are in a closed system with no migration in or out of either

2.Vector population size remains constant from year to year (could be changed later).

fE37;1000010102000004<10011000

Slot Code Value Explanation

1 ff Female Sex
2 E 21 Current Age
3 3 3 Age at first infection
4 7 7 Number of treatment doses received
5 ; 11 Cycle No. of last or current Treatment
6 1 1 Cycle No. of first treatment
7 0 Number of new fecund worms
8 0 Number of  worms aged 1 Yrs.
9 0 Number of  worms aged 2 Yrs.

10 0 Number of  worms aged 3 Yrs.
11 1 Number of  worms aged 4 Yrs.
12 0 Number of  worms aged 5 Yrs.
13 1 Number of  worms aged 6 Yrs.
14 0 Number of  worms aged 7 Yrs.
15 2 Number of  worms aged 8 Yrs.
16 0 Number of  worms aged 9 Yrs.
17 0 Number of  worms aged 10 Yrs.
18 0 Number of  worms aged 11 Yrs.
19 0 Number of  worms aged 12 Yrs.
20 0 Number of  worms aged 13 Yrs.
21 4 4 Total No. of Worms
22 < 12 Skin density mf/mg (No Treatment)
23 1 1 Skin density mf/mg after Treatment
24 0 0 No. of L3 in head of latest biting fly
25 0 0 Cycle No. start of current pregnancy
26 1 1 Number of worms actively reproducing
27 1 1 Nodules:  0= absent, 1= present
28 0 0 Punctate keratitis: 0= absent, 1= present
29 0 0 Mf in Ant. Chamber: 0= absent, 1= present
30 0 0 Spare
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3.Ivermectin has no long term effect on survival or fecundity of female O. volvulus. A gradual

recovery to pre-treatment microfilarial production levels takes place once ivermectin is stopped.

Subject Community

The community chosen was Corriente Grande, which had the following characteristics:

Location:  On Rio Cayapas, Esmeraldas, Ecuador.             Population: ≈ 150

Pre- Ivermectin Biopsy +ve prevalence over 10 years old = 100%

Classed as   Hyperendemic

First Ivermectin distribution 1991.

Annual and semi-annual regimes thereafter

Vectors: Primary; S. exiguum (unarmed cibarium). Secondary; S. quadrivittatum (armed cibarium)

Follow-up epidemilolgical surveys in 1996, and 2000-2001.

Initial Tests

Once SIMON-a had been set up with the parameters for Corriente Grande, including details

of the semi-annual ivermectin coverage of the eligible population and estimated extent of annual

nodulectomies, it was run for the equivalent of eleven years 1991 to 2001. The results obtained are

compared with field data where it exists in Table 1.
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Correlation between the generated and observed values for skin biopsy +ve. nodule carriers,

and larvae in flies were reasonably close (confidence limits could not be obtained from a single

run). SIMON-a tended to overestimate the number of infected under 6 year olds, and under estimate

the prevalence of punctate keratitis.  The model was therefore run with two treatments of ivermectin

per year (coverage of eligibles;  85%) until the end of years 2001, 2003 and 2005.  The predicted

values for the Elimination Certification Criteria obtained are given in Table 2

The predictions suggest that  by the

end of 2003 all the human criteria

would indicate that the disease had

reached the point of elimination..

However, infections in flies indicate

that some persons are still infective..

By 2005, no flies in a sample of

10,000 were found with larvae, and

the criteria indicate that the disease

can no longer be detected.

 Table 1  Comparison of SIMON-a generated data with field observations – Corriente Grande

Criterion 1991 1996 2000 -2001
FIELD SIMON-a FIELD SIMON-a FIELD SIMON-a

Biopsy +ve % > 10yrs 100 82.8 10.7 11.3 4.8 2.7
<6Yrs Infected % No Data 83.3Biop. 25.0 23.5PCR    0.0 5.7
Nodule Carriers % No Data 58.9No Data 25.8 10.8 10.7
Punct. Keratitis % 32.2 33.1 18.1 0.7 9.3 0
Mf.  Ant. Chamb. % 48.5 33.1 30 0 0 0
Flies with Head Larvae
(TI)  %

No Data 0.33 0.06 0.03 0.02 0.01

Flies with Thorax Larvae
(TIP) %

No Data 2.9No Data 0.12 0.05 0.04

>10 yrs. = Survey limited to persons of 10 years of age and older.
Biop. = Data obtained from skin biopsy surveys.
PCR = Data from PCR determination of finger prick blood for presence of antibodies.

Criterion end 2001 end 2003 end 2005

7.9 0.0 0.0

CMFL % 0.2 0.0 0.0

<6 yrs.Infected % 27.0 0.0 0.0

Nodules % 17.1 10.3 10.1

0.7 0.0 0.0

0.0 0.0 0.0

4 1 0

1 0 0

Biopsy +ve %

Punct. Kera. %

Mf in Ant. Ch. %

Flies/10,000 with  
Larvae in Thorax

Flies/10,000 with  
Larvae in Head

Table 2  SIMON-a predicted Certification Criteria values for
Corriente Grande
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An examination of the numbers of L3 larvae transmitted to the whole Corriente Grande population

each cycle (Fig. 2) shows that when ivermectin is stopped at the end of  2003, some l3s were

transmitted into 2004 followed by a period 2005 to 2007 with no transmission.  However, between

2008 to 2010 there was a brief resumption caused by the lifting of the suppressing effect of the drug

on the remaining live female O. volvulus. Transmission finally ended in 2011, and by 2012 the

whole population was negative.

Fig. 2

Human infections
Zero  2012

Ivermectin 1991 to 2003 No ivermectin

Recrudesence
2008 to 2010

2003 2008 2010 2012
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Conclusions

1.In its present configuration SIMON-a mimics the field data for Corriente Grande reasonably well

2.Prediction by extrapolation suggests that ivermectin might be stopped after 2003, although  a few

persons may continue to  be infected until 2012 or beyond.

3.These predictions are based on single runs of the model. Multiple replications will be required to

determine the degree of variation that might be expected.

4.Because SIMON-a assumes that ivermectin has no permanent effect on female O volvulus these

predictions might be construed as pessimistic.

5.It is hoped to continue refining SIMON-a as more accurate information becomes available, and to

apply  it to other scenarios.
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Dr. Warwick Grant
Predicting risk of resistance:  How quickly might it be expected?

HOW REAL IS THE THREAT OF IVERMECTIN RESISTANCE IN O. VOLVULUS?
W Grant

The answer to this question is dependent upon several related factors. Each of these factors needs
to be considered in order to form a view about the likelihood that resistance to ivermectin (IVM)
will lead to a failure of control or eradication of Onchocerca volvulus and the speed with which
this could occur. I hope to indicate what some of these factors may be, how they may interact
and what action could be taken to determine the risk of resistance arising. There are essentially
no relevant data concerning IVM resistance in O. volvulus directly, so one of the major aims of
this paper is to suggest what data need to be collected in order to make more reliable predictions
concerning IVM resistance. The paucity of data also means, of course, that this paper is a starting
point for discussion rather than a description of the real situation.

1. What is resistance?Resistance can be defined as the failure of control following a drug
treatment that previously resulted in control. In the case of IVM and O. volvulus, defining
resistance is more complex because IVM acts against at least two distinct stages of the life cycle
to bring about 4 distinct effects. First, it causes the microfilariae to leave the skin and eventually
accumulate in the lymphatics, where they are destroyed. What is the basis of this action of IVM
on microfilariae? Second, IVM temporarily suppresses the production of new microfilariae by
the resident macrofilariae. Third, it causes a permanent loss of ~30% of fecundity in exposed
adult females once they have recovered from the acute effects of the drug so that repeated
treatment will eventually result in permanent sterility. Fourth, there is some evidence that
repeated IVM treatment reduces the lifespan of macrofilariae. Are the effects on macrofilarial
fertility and longevity due to the action of IVM on a single target and is the target(s) in
macrofilariae the same as the target in microfilariae. If not, on which target is resistance selection
most likely to act and what will the resistance look like? This is an important question, because
the manifestation of resistance is likely to differ depending on which of these drug effects is
altered by the resistance allele (see Grant, 2000, for a more extensive discussion of this issue).
Note that by using the singular “allele” I do not necessarily mean that resistance is monogenic. It
is simply less cumbersome than “allele(s)”.

Briefly, there are two likely resistance phenotypes.A) If resistance acts to permit the survival
microfilariae already present in the skin then resistance will manifest as a smaller than expected
post-IVM decrease in skin microfilariae. This may be followed by a further slow decline of skin
microfilarial numbers as natural attrition takes its toll before the macrofilariae recover and
resume production of new microfilariae.  B) If resistance acts to permit macrofilariae to continue
reproduction or to resume reproduction more quickly following IVM treatment, then there will
be the usual rapid post-IVM disappearance of microfilariae from the skin but a more rapid
reappearance of new microfilariae. In the context of transmission (see below) both mechanisms
will result in a period during which the only microfilariae available to blackflies will be either
(A) the survivors of IVM-treatment or (B) the progeny of more rapidly recovering parents. In
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either case, all transmitted worms will carry resistance alleles and will likely be related to each
other but the “resistant” microfilariae will be present at different times post-IVM.

2. Emergence of resistance: Resistance can emerge through either the selection of a pre-existing
allele present at low frequency in the sensitive population or through de novo mutation followed
by selection. The former is compatible with polygenic inheritance of resistance but the latter is
not (or it is very unlikely to be). Note that there is no necessity to postulate that a rare resistance
allele that is maintained in a sensitive population is rare because it is deleterious. The frequency
of an allele in a population is not necessarily a reflection of its adaptive value but can be the
product of a range of other genetic factors (eg. population history, bottlenecks, founder effects,
genetic drift etc). It is also obvious that the pre-existing resistance allele must be rare in an
untreated, naïve population.

This is a restatement of one of the principles of evolution: selection requires phenotypic variation
and that variation must be heritable i.e. due to underlying genetic variation. The genetic
variability may arise via mutation or may already exist in the population. It seems almost certain
that the necessary genetically determined variation in IVM sensitivity is already present in
O. volvulus. That is, the IVM resistance allele is already present in O. volvulus populations.

What is the basis for this assertion? IVM resistance has arisen repeatedly in a wide range of
parasites of veterinary importance following several generations of treatment and can be readily
selected in populations of several species of free-living nematodes. The IVM resistant
individuals in a naïve population have been directly observed in single step selection
experiments in at least one species of ovine gut parasite. Thus it appears that the allele which
confers IVM resistance is likely to be present in a broad range of nematode species and I am not
aware of any reason a priori that it will be absent from O. volvulus.

3. Intensity of selection & refugia: The intensity of selection will have a major impact on the
probability that resistance will emerge. The importance of selection intensity is illustrated by
comparing two parasites of veterinary importance in which long periods of exposure to IVM
have had very different resistance outcomes. Dirofilaria immitis (which is closely related to
O. volvulus) has a long history of IVM treatment but no confirmed reports of IVM resistance. In
contrast, gut parasites of sheep have had a similarly long history of IVM treatment and, in some
cases, IVM resistance has arisen in the space of a few parasite generations. The key difference
between these species is most likely the difference in the intensity of selection. In gut parasites
the majority of the parasite population is in the host and is therefore exposed to IVM and
subjected to selection. In D. immitis, only incoming L3’s are exposed to the drug and these L3’s
are likely to represent only a small proportion of the total population. Simple models show that
for a given resistance allele frequency, the intensity of selection is determined largely by the
proportion of the total population that is exposed to selective agent or, conversely, the proportion
of the population left untreated in refugia.  In O. volvulus the proportion of the parasite
population that is exposed to IVM is essentially 100% (assuming all infected hosts are treated) so
that there are few or no worms of any stage in refugia. This is very similar to the ovine gut
parasite experience where resistance has emerged quickly and where the speed of selection was
largely a function of the proportion of the population that was treated. In the extreme case for
O. volvulus (where there is complete treatment coverage) there are essentially no worms in
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refugia and the only worms able to contribute to the next generation will be the survivors of the
drug treatment i.e. be resistant. The majority of their progeny will carry the resistance allele and
selection will be rapid.

4. The spread of resistance and transmission: The presence of a resistance allele in a population
and intense selection pressure will ensure that resistance will emerge. Resistance will only cause
control failure if it is disseminated through the parasite population, so it is not the emergence of
resistance per se that is the key but rather its dissemination. This is especially true in O. volvulus,
where the prevalence and efficiency of the blackfly vector will play an important role.

Envisage a situation in which there is one patient harbouring IVM resistant worms: the
microfilariae in the skin of that patient post-IVM treatment have inherited the resistance allele
but must be taken up by a blackfly, mature to L3 and then be transmitted to a new host and
mature to reproductive adults in order for resistance to spread. There are several steps at which
transmission may fail. This is especially true if any step in the transmission pathway is density
dependent because it is likely that the numbers of IVM resistant microfilariae will be small and
present only in a very small proportion of the host population. In particular, what is the effect of
low microfilariael density on ingestion of microfilariae by blackflies and their maturation to
L3’s? These and other transmission related factors would have a major impact on the likelihood
that resistance will be disseminated. How accurately can these be modelled? Even without
modelling, it seems obvious that resistance is much less likely to spread in Central American foci
with inefficient vectors than in Africa where the vectors are much more efficient.

An understanding of the timing of the reappearance or persistence of “resistant” microfilariae
after treatment is also important for modeling the transmission of a resistance allele. The few
“resistant” microfilariae present after treatment will be the only individuals available for
transmission until susceptible microfilariae reappear as macrofilariae recover. During this period
the majority of parasites that make it through a blackfly to a new host will carry a resistance
allele. Thus transmission of the resistance allele and resistance dissemination will be maximised
if there is transmission during the period in which “resistant” microfilariae enjoy a monopoly. It
is therefore important to know when this period occurs relative to IVM treatment and how long it
persists. For example, coordinating IVM treatment with periods of low vector prevalence or
localised post-IVMvector control where resistance is suspected will slow resistance
dissemination.

The pessimistic prediction is, therefore, that the resistance allele pre-exists in the O. volvulus
population and that following treatment there will be a period during which the only parasites
that are transmitted will carry the resistance allele. The dynamics of transmission will be
influenced by microfilarial availability (which is a function of the resistance mechanism), vector
availability and vector efficiency. Thus, the threat of resistance will be influenced as much or
more by the dynamics of parasite transmission as by the starting frequency and mode of
inheritance of the resistance allele.

5. Detecting resistance: The likelihood that resistance will emerge in a population is the product
of the resistance allele frequency in that population and the intensity of selection. We have seen
that the intensity of selection is likely to be high in O. volvulus and that this will favour
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resistance selection if the allele is present in the population. We are, however, unable to detect
the presence of the resistance allele directly because we do not know what is. Nor is it likely that
it’s presence can be detected indirectly by monitoring large numbers of patients after treatment,
partly because we do not know how resistance will be expressed (see above) and partly because
it is simply not practical to do so.

Intensive use of IVM to eradicate onchocerciasis in the absence of vector control should
incorporate monitoring for IVM resistance. What form should this take? I favour a DNA based
test that is carried out on the same blackfly samples that are currently used to monitor
transmission. This ensures the critical linkage between emergence and dissemination of
resistance is incorporated into the monitoring method, which is in turn based on a procedure that
is already in place and accepted in the field. In the interim, current PCR-based transmission
surveillance may be capable of detecting likely resistance: has already identified sites where
transmission in the presence of IVM treatment has been detected. These sites warrant further
investigation.

The key step in the development of a PCR-based assay is the identification of a suitable
diagnostic or marker allele, a goal that still eludes us. Note that the “resistance marker allele”
that is the basis of the assay need not be the gene that encodes the resistance determinant. It is
sufficient that the marker is in tight linkage disequilibrium with the true resistance determinant
so that there is an acceptably low risk of false negatives. The long lifespan of macrofilariae adds
a complication to the development of a resistance diagnostic. Macrofilariae are not killed by
IVM and may survive several years of IVM treatment irrespective of their ability to either
produce resistant progeny (resistance phenotype A) or reproduce in the presence of IVM
(resistance phenotype B). Thus the analysis of macrofilariae may not be informative in the
context of defining or validating a resistance marker. It is the presence of microfilariae after IVM
treatment (either due to differential survival of IVM treatment or an earlier recovery of
microfilariael production) that is the most likely resistance phenotype. Consequently, the search
for a resistance marker should be based on genetic analysis of microfilariae.

6. Conclusions: There is no direct evidence for an IVM resistance allele in O. volvulus but the
existence of IVM resistance in other nematodes, the circumstances under which those resistances
have arisen and the observation of apparent control failure in Africa all suggest that it would be
prudent to include resistance monitoring in any IVM-based control or eradication program. The
research requirements for the formulation and implementation of monitoring and intervention
strategies are to define the resistance phenotype and likely genetic markers in O. volvulus. This
research should be guided by careful consideration of the likely key aspects of IVM resistance
biology in O. volvulus.
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Dr. Kwablah Awadzi
Evidence for resistance and resistance monitoring in the field

O. VOLVULUS RESISTANCE TO IVERMECTIN:
EVIDENCE FOR RESISTANCE AND RESISTANCE MONITORING IN THE FIELD

K Awadzi

Introduction

Ivermectin is the only drug recommended for the control of onchocerciasis, the chronic filarial
disease caused by Onchocerca volvulus (1). Although the parasite exists in the human host as
infective larvae, pre adult forms, adult worms and microfilariae (mfs), current drug therapy is
directed entirely at the mfs and adult worms. The mfs determine the major manifestations of the
disease and are also the form taken up by the Simulium vector to complete the transmission
cycle. The main importance of the adult worms lies in their production and release of mfs.

Ivermectin is supplied free of charge by the Mectizan Donation Programme to all residents of
onchocerciasis endemic areas, for as long as they need it; the success of ivermectin based control
programmes requires that ivermectin remains effective, however long it takes to
control/eliminate the disease. The possibility that O. volvulus could develop resistance to
ivermectin has been considered and a constant surveillance for this phenomenon has been
advocated (2). WHO has urged that methods be established for detecting the development of this
resistance and that possible underlying mechanisms be studied (1). Although the expectation was
that resistance would develop following multiple treatments, it is just as important, if not more
so, to examine for primary or ‘fist dose resistance’ as selection of the resistant strain following
treatment may occur more rapidly than with ‘ multi dose resistance’.

Treatment with ivermectin results in clinical (3-7), parasitological (8-16), clinical laboratory (17)
and immunological changes (18-24); of these, the parasitological effects are the most readily
reproducible and are used routinely for the evaluation of the effectiveness of treatment. The skin
mf counts are indicators of microfilaricidal activity and surrogates for the effect on the adult
worms. Reports from the field routinely use this indicator for treatment effectiveness in the
individual and for deriving other indices such as the community microfilarial load (CMFL) and
the prevalence of infection.  Examination of the adult worms determines the effects on their
viability and reproductive activity. Additional information is obtained from the uptake and
development of mf in the vector.

The expected parasitological effects of a single, unique administration to a naive population and
of multiple doses of ivermectin are well documented. The suspicion that O. volvulus has
developed resistance to ivermectin is raised when observed results do not meet the expected.
This needs to be fortified by the exclusion of other causes of inadequate response and confirmed
by the demonstration of a plausible genetic basis for such resistance. It is essential to determine
whether the abnormal response involves the mfs or the adult worms, as this determines the
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optimum approach to the development of tools to detect resistance and the severity of the impact
on resistance and treatment failures (25).

Resistance after multiple treatments

The suspicion

In 1987, the OCP initiated ivermectin distribution in the Lower Black Volta basin where aerial
larviciding had started in 1975 and in the Pru basin where vector control was introduced
subsequently in 1988. Both foci are located in Ghana. Communities were monitored for drug
efficacy using parasitological and entomological indices. In 1997, the Ghana National Control
Programme and the OCP identified 26 males and 5 females with persistent significant
microfilaridermia. A concept of ‘non response’ (inadequate response) defined as a skin mf count
$10mf/snip after 9 or more treatments with ivermectin evolved. The need to exclude the
development of resistance to ivermectin by mfs and/or the adult worms of Onchocerca volvulus
following multiple treatments was indisputable.

Exclusion of patient factors

After obtaining informed consent, 28 male subjects were selected from the OCP database to
participate in an open, case-control study at the OCRC. The 'cases' were the ‘non responders’.
They were matched with subjects from the same foci known to have become negative following
treatment (responders) and with 14 infected subjects from an area without previous ivermectin
distribution or vector control (The Tordzi basin). Matching was with respect to age, body weight,
number of treatments and skin mf density, as appropriate. Prior to admission, a detailed history
confirmed ivermectin consumption, documented the adverse effects to each dose and inquired
about the use of agents that may adversely interact with the drug.  Mf counts in skin snips
established the category of the volunteer 3 to 4 years after the OCP investigation. In hospital,
standard conditions were imposed on all participants (abstinence form alcohol, tobacco, herbs,
non prescribed drugs and all had a common diet). Detailed physical, ocular and laboratory tests
unearthed any underlying diseases. A single dose of ivermectin was given to each patient after an
overnight fast, according to the Merck schedule. Multiple blood samples were taken over 72
hours to determine plasma levels and pharmacokinetic parameters.

 Assessment of parasite response

Each patient acted as his own control and comparisons were made between pre and post
treatment indices. The sensitivity of the mfs was determined on percentage reductions on initial
skin mf counts and in mf uptake (VmfU) and larval development in the Simulium on fly feeding
as at day 8. The sensitivity of the adult worms was determined from embryogrammes and the
return of skin mf at month 3. A final assessment will be done at 12 months.

 Parasite factors-the genetic basis for resistance

Parasite material collected pre and post treatment were preserved. They include mf from skin
snips, mf and developing larvae from the vector and adult male and female worms. Genetic
profiling is in the early stages.
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Current status of evidence on resistance

In all 3 cohorts (non-responders, responders and ivermectin-naive) we have observed responses
that differ from the expected. The significance of these findings await data from other aspects of
the investigation.

First dose Resistance

In an unrelated study, we have observed one ivermectin-naVve patient who, after treatment,
achieved only a 42% reduction in the initial skin mf count at day 30 (expected 99-100%). There
was no underlying disease and exposure to ivermectin was more than adequate, as determined
from pharmacokinetic data. Here, ‘primary’ mf resistance is a plausible diagnosis. However,
material is not available for genetic studies.

Concluding remarks

Ivermectin treatment has brought considerable benefits to all who reside in onchocerciasis
endemic areas. The severe consequences of visual impairment, blindness, disfiguring skin lesions
and weight loss seem to be features of a distant past. Other indicators such as the elimination of
skin mf and reductions in prevalence and the CMFL attest to the efficacy of the treatment
regimens. There is at present no firm evidence that there are populations of O. volvulus that are
resistant to ivermectin. However, whenever a single agent bears the responsibility of disease
control, to be used on a long term basis in differing dosages in many countries, it is prudent to
examine for any differences between the observed and the expected effects of treatment.
Although this is more likely after multiple treatments, first dose resistance could involve the first
pill given to the first patient.
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O. VOLVULUS RESISTANCE TO IVERMECTIN: IS IT OCCURRING?  LESSONS FROM THE

VETERINARY FIELD, WITH THOUGHTS ON SURVEILLANCE FOR RESISTANCE

R Prichard, J Eng and B Ardelli

Ivermectin resistance in veterinary parasites

Ivermectin (IVM) resistance occurs in several trichostrongylid nematode parasites of sheep,
goats and cattle in various parts of the world. In Haemonchus contortus it is very common.
Nevertheless, it should also be remembered that IVM has been used extensively against
nematode parasites of horses and dogs and resistance has not so far been reported in parasites of
these hosts. However, against nematodes in horses it is not very effective against larval stages in
the tissues of the horse and thus selection pressure may be low.

Dirofilaria immitis: a model for Onchocerca volvulus?

In dogs, IVM is used for prophylaxis of Dirofilaria immitis. This is a filarial nematode, similar to
O. volvulus. D. immitus in the dog has been suggested as a model for possible IVM-resistance in
O. volvulus. This may not be a good model for IVM resistance in O. volvulus for several reasons:
(1) IVM is used at only 3 μg/kg in the dog, compared with 150 μg/kg against O. volvulus; (2) in
the dog, IVM is used prophylactively to kill incoming L3 larvae. It does not act against other
stages of the life cycle. Most of the parasite population will exist in other life-cycle stages and
IVM selection pressure will be very small. In contrast, in onchocerciasis, IVM is directed to
existing infections, normally killing all of the microfilaria (mf) in the human and sterilizing the
adult worms for several months. Most of the worm population will be subjected to IVM selection
and only the very small fraction of the O. volvulus population in the vector will be exempted
from selection; and (3) dogs are treated on an individual basis with most of the dog population in
a region often not being treated. In contrast, IVM is given on a community wide basis for
onchocerciasis. However, the long life cycle and longevity of O. volvulus, and vector control will
delay selection for resistance in O. volvulus.

The genetic basis for ivermectin resistance in veterinary parasites

In parasitic nematodes such as H. contortus and C. oncophora, that we and others have
examined, we have found that selection for IVM-resistance selects for specific alleles of (1)
membrane transport protein genes such as P-glycoproteinsa,b,c,d, (2) _-tubuline, and in these
parasites and the free-living nematode, Caenorhabditis elegans, (3) glutamate-gated chloride
channele,f,g genes. We believe that P-glycoproteins act to efflux IVM out of the nematode cell
membranes, and glutamate-gated chloride channels are the mode of action receptors for IVM.
The function of _-tubulin in IVM action is not clear, although it may play a role in anchoring
the mode of action receptors at interneurone or nerve-muscle junctions. We have been examining
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these and other genes associated with IVM action for evidence of genetic selection in O. volvulus
following repeated field treatment with IVM.

Changes in genetic polymorphism in O. volvulus associated with ivermectin treatment

We have so far compared populations of O. volvulus derived from people who have not been
treated with IVM (2 groups from Ghana and Uganda, respectively) and O. volvulus from people
who have had community IVM treatment 6 or more times. We have found significant differences
in the genetic polymorphism of P-glycoprotein and another membrane transporter gene (ABC-3),
and ∃-tubulin in the O. volvulus from the treated subjects compared with the two untreated
groups. In these genes, the two untreated groups, from different parts of Africa, showed similar
genetic polymorphism.

Surveillance for ivermectin resistance in O. volvulus: a diagnostic tool

These results suggest that IVM may indeed be imposing genetic selection on O. volvulus,
possibly associated with selection for resistance. However, additional O. volvulus samples, from
different regions and/or O. volvulus not responding to IVM, need to be examined to confirm this
evidence for genetic selection by IVM. If this data is confirmed, a DNA-based diagnostic tool for
IVM resistance in O. volvulus can be developed. It is intended that this diagnostic tool would be
used on samples of O. volvulus mf derived from the vector or from skin snips.
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IVERMECTIN AND MOXIDECTIN ARE CROSS-RESISTANT IN NEMATODES

AND THE RATE OF DEVELOPMENT IS THE SAME

W Shoop

Ivermectin was introduced to the market in 1981.  In 1985 the first case of an ivermectin-
resistant worm was reported.  Since that time, ivermectin-resistance has been identified in five
trichostrongylid species from sheep and cattle.

Moxidectin was commercialized in ~1992.  It was offered at the same dose rate and against the
same spectrum of parasites as ivermectin, but with the notable exception that it could be used
against ivermectin-resistant worms.  Whereas ivermectin has balanced activity against the
spectrum of nematodes and arthropods, moxidectin emphasizes greater activity against
nematodes, most notably against the three trichostrongylids in sheep that have become
ivermectin-resistant.  This ability of moxidectin to kill some ivermectin-resistant worms
mistakenly led some to think that moxidectin may have a different mode of action than
ivermectin and that there would be no cross-resistance.

Careful titration of ivermectin and moxidectin against an ivermectin-resistant field strain of
Ostertagia circumcincta in 1993 revealed that worms resistant to ivermectin were
simultaneously resistant to moxidectin.  For example, 4.7 ug/kg of moxidectin was required to
kill 95% of the susceptible strain of O. circumcincta, but 148.0 ug/kg was necessary to kill the
same percentage of the so-called ivermectin-resistant strain.  It should be noted that this field
strain had been selected for resistance by ivermectin and had never been exposed to moxidectin
at any point in its history.  Yet, the resistance factor for moxidectin was 31-fold.  Significantly,
although there was substantial resistance to moxidectin, it would have gone unnoticed in the field
because the amount had not yet exceeded the use level of 200 ug/kg.

To the other side of the story, ivermectin required 22 ug/kg to kill the same susceptible strain of
O. circumcincta, but 514.0 ug/kg was necessary to kill the same percentage of the resistant
strain.  This represented a resistance factor of 23-fold.  Clearly, 1) these worms selected by
ivermectin were cross-resistant to both ivermectin and moxidectin, 2) moxidectin was more
potent which disguised the underlying resistance, and 3) the rate of their resistance was the same.

As important as these previous conclusions were, additional observations showed that this
identical pattern was also observed when resistant Haemonchus contortus and Trichostrongylus
colubriformis were examined.  To date, every study in which titrations have been performed
have confirmed that when there is ivermectin resistance there is also moxidectin resistance, and
vice versa.  No study contradicts this tenet.  Resulting from these studies, fewer statements have
been seen recently in the literature suggesting that ivermectin and moxidectin have different
modes of action or that there is not cross-resistance between the two, but instead the drumbeat
has now shifted to the ‘possibility’ that there may be different rates of resistance development.
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For example, it would be unfair to suggest from the aforementioned study, where there was an
ivermectin resistance factor of 23-fold and a moxidectin resistance factor of 31-fold, that there
was a greater rate of resistance to moxidectin.  The fact is that these are absolute numbers based
on estimated dosages and are not statistically significant.  The best that one can conclude from
these data, or any like them, is that clearly there is cross-resistance between the drugs but the
rates are the same.

When others see differences, an evolutionist sees similarities.  Any suggestions that ivermectin
and moxidectin differ fundamentally must take into account the following fundamental
similarities:  ivermectin and moxidectin are semisynthetic molecules derived from Streptomyces
sp., they are structurally superimposable, they kill the same spectrum of parasites, they are given
at the same dosage, they have the same mode of action, they competitively displace one another
at the same chloride channel binding sites, worms resistant to one are resistant to the other,
resistance develops at the same rate, and they show the same mechanism-based toxicities.

The reason for these similarities is because ivermectin and moxidectin share the same
pharmacophore.  A pharmacophore is the 3-dimensional, electronic configuration that will lock
into a specific receptor and trigger a defined mode of action.  That pharmacophore in ivermectin
and moxidectin is virtually identical and is why their biological activities are so similar.  Any
statements suggesting that one does something fundamentally different than the other should be
viewed with skepticism and should be accompanied with a high burden of proof.
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SELECTION FOR RESISTANCE TO MACROCYCLIC LACTONES

BY HAEMONCHUS CONTORTUS IN SHEEP

S Ranjan, GT Wang, C Hirschlein, and KL Simkins

Abstract
An anthelmintic-sensitive Haemonchus contortus strain was selected for moxidectin and
ivermectin resistance concurrently for 22 generations.  Treatment with 0.002 mg moxidectin/kg
BW or 0.02 mg ivermectin/kg BW produced >99% efficacy against the susceptible parent strain
passaged for 22 generations without any anthelmintic exposure.  However, to obtain similar
efficacy the moxidectin-selected and the ivermectin-selected strains of H. contortus required 0.05
mg moxidectin/kg BW or 0.4 mg ivermectin/kg BW.  These results indicate that development of
resistance to one macrocyclic lactone, simultaneously, results in resistance to another macrocylic
lactone.  However, rates of resistance development differ between compounds and occurs more
slowly with moxidectin than with ivermectin.
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ACHIEVING AND SUSTAINING HIGH TREATMENT COVERAGE: EXPERIENCE OF APOC
UV Amazigo, M Noma, and A Seketeli

The African Programme for Onchocerciasis Control (APOC) was launched in 1995 as a unique
health development partnership with the objective to eliminate onchocerciasis from Africa, by
establishing a sustainable ivermectin (Mectizan®) delivery system to free more than 56 million
people living in endemic communities. The public-private sector partners of APOC are, 19
African countries, donors, foundations, non-governmental development organizations (NGDO),
affected communities and Merck & Co. Inc., which undertook to provide ivermectin
(Mectizan®) free of charge and for as long as needed.

In 1997, APOC adopted as a principal strategy for the control of onchocercaisis within the
programme ‘s scope, community-directed treatment with ivermectin (CDTI). By the end of 2001,
APOC had approved 59 CDTI projects in 14 of the 19 member countries. The target is to treat at
least 65% of the total population and 100% of all hyper and meso-endemic communities
annually for several years in order to achieve the Programme’s objective.

The unique features of the CDTI strategy are that endemic communities are empowered to take
full responsibility for the drug distribution process. They decide how and when and by whom
treatment should be administered; they oversee the implementation of treatment, recording-
keeping, reporting and referral of cases of severe adverse experiences (SAEs). This is presently
being done in more than 62,000 endemic communities in sub-Saharan Africa. CDTI has also
been seen as a stimulus for delivering health care services in remote and hard –to-reach endemic
communities, a ready pathway for international community to deliver donated and other drugs to
those most in need, thereby strengthen the health services.

Achieving high treatment coverage

With CDTI, geographical and therapeutic coverages have increased substantially, to the levels
needed to eliminate onchocerciasis as a public health and socio-economic problem. The number
of people now receiving treatment every year, over 20 million, is more than double the eight
million it was when APOC was launched and as shown in the tables, therapeutic coverage in
individual countries and projects has increased in excess of 65%. The independent participatory
monitoring reports indicate that most likely APOC projects will continue to maintain high
treatment coverages during the life of the programme. The findings of the independent monitors
are corroborated by a five-year  (1996 –2000) data on therapeutic coverages in Nigeria, Uganda,
Malawi and Tanzania which show increase in treatment coverage. Evidence from countries
technical annual reports, External mid-term Evaluation of APOC and independent monitoring
reports show that some projects are likely to maintain good coverage levels  (>65% of total
population) even after the cessation of APOC support. So far the trend is promising. The
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challenge is sustaining high treatment coverage for several years after the cessation of APOC
support in 2010.

Sustaining high treatment coverage

Maintaining over 65% therapeutic coverage over a long period of time, especially when
community interest has waned and the immediate health benefits of treatment are no longer
obvious is a major challenge to APOC and constitutes the mainstay of its focus during the Phase
II and Phasing-out Period (2002 – 2010).  The experience of APOC show there are obvious
deficiencies, which impact directly on treatment coverages. The deficiencies which need to be
addressed are mostly managerial and technical, they include:

(i) deficiencies in budgetary provision and inadequate release of funds by participating
governments,

(ii) inadequacy of front-line health facilities and a decline in the quality of health services
which has negative impact on the supervision of ivermectin distribution and the activities
of community directed distributors (CDDs) of ivermectin.

(iii) Shortage and untimely supply of ivermectin to affected communities. As example, a
comprehensive analysis of more than 14,900 household interviews in 26 projects showed
that 29% of 669 communities studied surveyed experienced shortages in the supply of
Mectizan®, and there is a significant inverse relationship between shortage and treatment
coverage (p=0.005).

(iv) High rates of absentees and refusals to treatment.  In countries’ technical reports,
program managers attribute high rates of refusals to fear of severe adverse experiences
(SAEs). As example, in areas where onchocerciasis and loasis are co-endemic in
Cameroon, reports of SAEs abound and community members have voiced their
skepticism about ivermectin from their experiences of severe side effects. There is a clear
need for better tools for assessing SAEs, improving community knowledge of early
warning signs and strengthening IEC and communication strategies in affected areas.
This challenge is receiving priority attention among the partners of APOC.

(v) Inadequate empowerment of communities in decision–making and participation within
the context of primary health care (PHC) and drug distribution systems. The level of
involvement of communities in CDTI programs’ decision-making processes varies from
country to country. The experience of APOC and reports of independent monitors of
CDTI projects indicate, among other things, that of the three indicators of sustainability
related to community participation, community meetings over the period of treatment are
more likely to improve treatment coverage. Treatment coverage rates tend to increase
when communities receive ivermectin at the period they decided for distribution.

(vi) The motivation of CDD and provision of incentives by communities needs to be properly
addressed to maintain desirable levels of both geographical and therapeutic coverages.
About 34% of CDTI target communities currently provide their own support to the
ivermectin distributors as part of their responsibility in the APOC partnership. The
provision of financial incentives has remained a thorny issue for CDTI and several other
community based health interventions. However, in the experience of APOC, the
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monitoring data of 26 CDTI projects over a three-year period (1998 – 2000) provided no
clear evidence to show that provision of financial incentives to CDD improves treatment
coverage rates. The challenge for APOC is to advocate for a standard policy on
incentives among agencies supporting community-based health interventions.

In summary, APOC partners have made significant progress in achieving high treatment
coverages through the Programmeʼs strategy, community-directed treatment with ivermectin
(CDTI). To sustain the high levels of coverage in all sites, in particular, in conflict areas within
the confines of the programme will be required to achieve the elimination of onchocerciasis as a
public health and socio-economic problem and strengthen the health care systems.
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ACHIEVING AND SUSTAINING HIGH TREATMENT COVERAGE IN THE FIELD.
EXPERIENCE IN OCP AND CHALLENGES FOR POST OCP MONITORING

BA Boatin and KE Siamevi

Achieving and sustaining high treatment coverage

Until 1987 vector control was the only means of intervention against onchocerciasis in the
Onchocerciasis Control Programme in West Africa. The registration of ivermectin for the
treatment of onchocerciasis and the confirmation of its feasibility for large-scale distribution was
a breakthrough for drug management of onchocerciasis.

The OCP undertook an extensive mapping based on skin snip examination to demarcate areas to
be eligible for treatment.  Eligibility for treatment was based on CMFL 5 mfs/s or more. Using
this criterion ivermectin distribution in the Programme has evolved from mobile treatment,
through community based treatment to the present community directed treatment with ivermectin
CDTI.

The simple parameters for assessing the performance in ivermectin distribution have been the
geographic and therapeutic coverage.  Geographic coverage of 100% and therapeutic coverage of
a minimum of 65% respectively have been the target for treatment.    (Therapeutic coverage has
been defined in the OCP, as the number of people treated as a proportion of the total population
in the area (community) under consideration.

Geographic coverage in the OCP has varied from as low as 45 % to 100%.   The average has
been about 80%.  Treatment coverage has however been consistently high in most countries with
an average of about 77% with respect to the minimum expected.    In the experience of the
Programme, the following factors seem to have played a role in achieving and sustaining high
treatment coverage in the field:

Sensitization:  Before the introduction of CDTI each of the countries held a country-specific
workshop, which implicated the authorities at the Ministry of health- as participants or fully
informed of the installation of CDTI. Thus sensitisation of the Ministry of health was done early.
This generated authority and support for the lower (Regional, district, health centre) level staff to
embrace CDTI as part of their work.

Decentralisation:  As part of the workshops each country decided on the level of decentralisation
for oncho activities including ivermectin treatment, and hence at which level of the ministry of
health financing and logistics for oncho activities would be included in the plan of action for
health activities e.g. Regional level, district or zone.  All the countries have already implemented
this policy of decentralisation. In Benin, Burkina Faso, Cote d’Ivoire, Guinea and Senegal oncho
control features in the plans of action and budget of regions and districts.
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Direct involvement of peripheral staff: The district and peripheral health personnel were
represented at the country specific workshops. District specific workshops on CDT were also
held. They were fully involved in the preparation for CDTI.  The peripheral nurses themselves
provided information on the number of villages and their populations in their respective areas
and, in collaboration with the National teams planned for their training and that of the
Community distributors (CDs).

Training and retraining where necessary has been pursued vigorously. These have served to keep
awareness and interest in the campaign and as a form of motivation for the nurses as well as CD.
Although no specific cash payment was given to trainees their transportation cost and overnight
stay when training was done at a central point was to the charge of the Programme/NGO.  A
cycle of training helped to ensure that new nurses transferred to the oncho endemic areas got
trained to enable them supervise the treatment.

Supervision of treatment by the health Centre staff has been financed by NGOS and OCP in
addition to what the countries can rake together.   The OCP encouraged and helped start the
necessary supervision by providing fuel for some health centres whose budget did not yet cover
the extra distances involved. This is deemed a temporary measure until the countries begin to
have the cost reflected in their plans of action and budget.   Benin, Burkina Faso, and Senegal
and are self-sufficient already.  In some countries nurses have received payment from other
sources for a number of villages supervised and well treated.

Best coordinator and district awards. The Programme established an annual award for the best
coordinator and district in the implementation of CDTI as an encouragement. This has been
keenly competed for perhaps to the advantage of all.  The process has continued in time and may
need a new a proprietor to continue it when OCP closes.

Monitoring has been done through several levels.  a) By OCP field staff of the vector control
Unit. A very simple questionnaire that is a modification of what was developed in Kaduna
through the TDR Task force for operational research on onchocerciaisis is used.  b) Periodic field
visits by national team staff financed in most cases by OCP (Benin and Burkina Faso have
financed this by themselves) and OCP staff and c) by periodic external independent evaluation
financed by OCP have been done.   Monitoring has not only served to inform the national teams
and the Programme of field operational issues but also as a way of keeping staff in touch with the
community and to keep the communities (nurses, CDs etc) interest in the endeavour.

Drug supply in the field has been crucial for the treatment.   The previous experience OCP
experience of long-term planning and schedule for ordering tablets ahead of time by meant that
shortages of tablets in the field were rare. If they occurred it was only for a short duration.  This
experience has been passed on to, and adopted by, the Countries that now order their own tablets
and in relatively reasonable time and in right quantities for the period of treatment.

Low coverage has usually come about because of the overstretching of the number of villages to
be covered for expediency rather than eligibility. Some villages are simply not treated because
they have not yet been attended to or just too scattered.   A clear and adhered to Ultimate
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Treatment Goal (UTG) in terms of villages notwithstanding political and, or social pressures
should help.

In most of the communities there is at least one CD to a village. Difficulties in finding a CD in
some villages  (refusal, no interest, inability of chosen distributors to understand what is required
of them) means a CD could find him/herself responsible for more than one village long distances
apart.  Distributors are thus unable or unwilling to cover the villages attributed to them.    Akin to
this problem is the presence of hamlets, which are not reached by the CDs.  No specific solution
has been found to non-availability of CDs in some communities, but sensitisation of
communities to help provide transport to distributors is being done.

Motivation/incentives for nurses and CDs would appear to work against achieving high coverage
and sustaining it.  In a recent study on motivation of nurses and CDs, (Prozesky) it was found
that more than 50% of nurses and CDs had low to moderate motivation towards CDTI. While
some CDs would be willing to start ivermectin distribution they very soon will stop if they do
not see any sign of a form of motivation or incentive -either in cash, kind or a recognition.

Challenges for Post OCP monitoring

The challenges for post OCP monitoring could be managerial and technical.

Planning and the periodicity for monitoring in the absence a coordinating body will require a
discipline that needs to be well entrenched in the Ministries of health, given that treatment will
continue for a long time and will no doubt see a rapid turn over of personnel.

Each country is at liberty to devise their own manner of monitoring but it will be necessary to
maintain a common ground for future cross country evaluation. Financing to support monitoring
will be a challenge. With the withdrawal of OCP’s support, the countries will need to look
elsewhere- external sources, NGO etc.-to supplement their own resources.  Inability to raise
these funds means a laxity in the monitoring cycles or not at all, with its consequences. The
countries will need extra funding to be able to conduct external and independent monitoring.

The fact that the Participating countries belong to a regional Programme makes them in
someway accountable to the group to undertake various activities of which monitoring is a part.
This seemingly ‘peer pressure’ will be absent during the post OCP period. The Participating
countries therefore will have to maintain interest in, and continue to place oncho control high on
their agenda and, with that, the need to monitor the performance of ivermectin distribution.

Technical issues with monitoring that will appear will need to be resolved on a country-by-
country basis initially. External support will be needed in reviewing   guidelines for monitoring
on a regular basis with the evolution of ivermectin distribution.

The main challenges therefore for post-OCP monitoring could be, the recognition of
Participating countries of the need to continue with monitoring in the face of competing health
issues, financing, maintenance of high standards for the process, updating of the guidelines for
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monitoring in the light of possible changes in ivermectin delivery and the need of each country to
accept accountability to a common purpose.
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Dr. Frank O. Richards, Jr.
Experience of OEPA

ACHIEVING AND SUSTAINING HIGH TREATMENT COVERAGE:  EXPERIENCE OF OEPA
FO Richards, Jr.

The endemic foci for onchocerciasis in the six endemic countries in the Americas (Brazil,
Colombia, Ecuador, Guatemala, Mexico and Venezuela) have different characteristics from
those in Africa that have given rise to stable foci amenable to focused attack and (theoretically)
eventual elimination using ivermectin alone.  The resultant elimination strategy of the
Onchocerciasis Elimination Program for the Americas (OEPA) is to suppress transmission calls a
high level of treatment coverage (>85% of the eligible population), two times per year, in all
endemic communities were infection prevalence is likely to support transmission of the parasite.
Numerous laboratory and field studies have demonstrated that twice per year treatment will keep
microfiladermia at low enough levels to suppress parasite transmission,2-5 even in areas with
efficient vectors, such as Ecuador.5-6   If program function can achieve and sustain the critical
coverage for 10-15 years, transmission will be suppression , and the adult parasite population,
unable to replenish itself, will perish from old age. At that point the mass ivermectin treatment
programs could be halted without fear of recrudescence of infection or eventual evolution of
ivermectin resistance.7

The goal of complete suppression of O. volvulus transmission throughout the Americas is
ambitious; coverage success will depend largely on sustained 1) health education to promote the
understanding and compliance of the affected populations, 2) excellent program function, guided
by good surveillance, data management and instructive epidemiological and process indices, 3)
political will at the highest levels, and 4) sufficient financial resources.   This presentation will
focus on item 2, and issues arising from monitoring the American programs over time to achieve
full coverage and sustain them until that point in time when it can be documented to an
international certification team that coverage has been achieved and sustained to interrupt
transmission, and end mass ivermectin treatments.

Examples of Programmatic Set Backs in Coverage: Guatemala and Ecuador

In Guatemala, public health policy changes resulting in the decentralization of public health
activities caused the interruption of ivermectin treatment from October 1994 to June 1996; the
treatment program resumed in July 1996, but it was not until four years later, in 2000, that the
same numbers of persons were treated as in 1993-4.   In Ecuador, where the need to sustain
semiannual treatment is particularly important since onchocerciasis is transmitted there by the
most efficient vector species in the Americas, Simulium exiguum, only 70% of the needed
treatment were provided in a hyperendemic village (El Tigre).  The suppression of the ATP in
that village from over 700 to 37 L3/year was dramatic, but not below the 20 ATP level the
program believes necessary to indicate suppression of transmission.  In both the cases
(Guatemala and Ecuador), such programmatic failures make it necessary, under current
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guidelines, to or reset the 12 year clock toward determination of cessation of treatments after
years of investment in the programs activities.

Semiannual treatment: lower coverage in second round

Coverage indices have focused on a percentage of the Ultimate Treatment Goal (UTG), which is
defined as the total number of persons eligible for treatment in the American region (429,920
persons).  In the first treatment round of 2000, 367,619 persons were treated, representing a UTG
coverage of 86%.  However, it was also observed that only 59.6% of eligible persons (256,385)
in the Region were treated in the second half of 2000.  The lower rate of coverage during the
second half of the year was observed in all six national programs.  This phenomenon could be
related to community fatigue (people don’t like treatment twice per year) and/or programmatic
failure (less importance given to a second round by authorities).

Monitoring

1) The UTG(2).  A single indicator of coverage, the UTG(2), to incorporate both first and second
treatment rounds, was adapted in 2000.  This indicator focuses on treatments needed rather than
on the eligible population at risk (UTG).  For example, whereas 85% of the eligible population in
Ecuador received treatment during the first round in 2000, relatively few (14%) of these persons
received a second dose. Consequently, UTG(2) coverage in 2000 was only 50% in Ecuador.
Use of the new UTG(2) denominator of 859,840 (twice the UTG of 429,920), showed the overall
2000 UTG(2) treatment coverage for the Region was 73% in 2000, with only Colombia and
Mexico achieving the goal of surpassing 85% of the UTG(2).  It was agreed at IACO 2000 that
all programs would aim to reach at least 85% of their UTG(2) in 2001, with the exception of
remote Amazon foci in southern Venezuela and Brazil, which would aim to reach their UTG(2)
in 2002.8

2) Community Coverages:   The UTG(2) is still an agregagate mean value and  does not provide
information on the range of community coverages being achieved in the program area.  OEPA
has before it the challenge of developing coverage reporting systems that provide individual
community coverage rates, per round or community UTG(2), for the 1969 endemic communities
of the region.  This would allow national programs to identify and focus tailored interventions in
problem communities not reaching the required 85% coverage of eligibles.

Conclusion

The way forward in the Americas was best summed up by Dr. Richard Collins in his
commentary during the September 2000 round table discussion at WHO Geneva  “How Far Can
We Go Towards Elimination Of Human Onchocerciasis?”7  He said (page 57):

“While the development of objective elimination criteria has been a useful exercise in
programme planning, goal-setting and evaluation, OEPA and the national programmes must now
turn their full attention and energy to establishing and maintaining high level coverage twice per
year in all communities where there is a risk of parasite transmission.  The “high-tech” methods
of PCR, DNA probes and sophisticated computer models can be helpful in evaluating outcome,
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but high- level sustained coverage requires community participation and the basic principles of
“shoe-leather” epidemiology: - finding the endemic communities; making maps of the houses;
census of households and families; tracking births, deaths and migration; treating and re-treating
all eligible persons; following-up of absentees and people refusing the drug; learning why people
refuse and making adjustments.“
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Dr. Eleuther Tarimo
Integration of ivermectin delivery in national health systems

STATEMENT BY E TARIMO

I would like to thank the organisers of the Conference for providing me an opportunity to share
my reflections on the Eradicability of Onchocerciasis. My observations are limited to two
interrelated areas on the agenda namely, Integration of ivermectin delivery in national health
systems and community participation. These two areas feature prominently in APOC policies. I
would like to say a word or two on their implementation in APOC countries and then very
quickly raise five issues that are relevant to “Feasibility of Onchocerciasis eradication”.

1. Integration of ivermectin delivery

Table 1, essentially reminds us of the different dimensions and parameters of integration. The
parameters relate to different levels and areas. Many APOC countries have made considerable
progress in integrating CDTI with other services. The biggest achievements relate to
establishment of community level coordinating mechanisms. But integration at higher levels
needs to be intensified.

2. Community Participation

The term community participation has become overworked, it is always important to indicate the
content and level of participation. Community participation in the CDTI projects it not either
zero or hundred percent. Figure 1 shows Levels of Community participation as a continuum in
different approaches of community treatment.  Obviously decisions on level of participation for a
particular programme will largely depend on the technology used, in this case ivermectin
treatment, requires strong community participation for success.  Other programs might not
require such a high level of participation.

Strong community participation in CDTI in APOC countries is evidenced by high levels of
leadership, planning and decision making by communities; Knowledge of communities on
onchocerciasis and its treatment; Involvement of the local infrastructure including, religious
institutions, schools, Traditional midwives, Traditional healers, Farmers co-operatives, women’s
organizations, youth clubs, Town criers, Red Cross and Scouts and community contribution and
community satisfaction.

3. Issues:

(i) Is CDTI under or over integrated?

Independent vertical programs are unable to benefit from economies of scale. Thus costs are high
and benefits are low. Integration increases benefits and lowers costs. Increase in benefits,
however, does not continue indefinitely. As the number of programs integrated directly under
one direction increase, costs begin to rise because the bureaucracy is too large to be managed
efficiently. At some point costs begin to outweigh benefits, See Fig 2, below. The point being
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made here is that integration is not an end in itself; the form it takes at different levels of the
health system has to be defined and made clear.

(ii) Entry point potentials of Ivermectin treatment

In many of the onchocercaiasis endemic areas, no functional primary health system exists.
Introduction of ivermectin treatment in these disadvantaged communities creates community
awareness and mechanism on which other essential care can be added.  There are many examples
of this happening. Is this not a matter that should be taken into consideration in discussions on
the issue of providing treatment to hypo-endemic areas?

(iii) Lessons from previous eradication programs

♦ Learning from doing One thing that does not come out clearly in the ten lessons from
previous eradication lessons is the importance of learning by doing. Smallpox eradication
and OCP are good example. People did not wait until all issues were resolved They started
with scarcity of tools. Experiences in the use of existing tools, including organizational
arrangements were the basis for deploying newer tools leading to success. Debate on issues
such as 6 monthly treatment will be resolved in the field by ongoing studies and others.

♦ Eradication programs require a vertical approach. One of the ten lessons from previous
eradication programs is that eradication requires a vertical approach. May be the full paper
will provide some clarification. The term integration, like community participation has
become overworked and can be misleading. Are the current policies of APOC, which favor
integration an obstacle to eradication? And would they have to be changed if eradication is
envisaged?  As far as I know, failure of the malaria eradication program was essentially due
to the fact that the program was organized vertically. The attack phase consisting of
environmental reconnaissance, house to house spraying with residual insecticides to kill
mosquitoes, was successfully carried out in many countries. The maintenance phase, during
which new cases of malaria should be diagnosed and treated as they occurred, was a failure
because basic health services did not have adequate coverage or capacity. There had been no
concurrent effort to improve basic health services.

♦ Time framework for eradication. What lessons can we draw from previous eradication
programs? Is a period of 10-20 years too long? Lessons outlined in the conference documents
are silent on this point. Looking at time required for smallpox eradication, I would answer
with a “NO”!

(iv) Participation in development of CDTI strategies

Clearly issues such as Ivermectin resistance, finding effective macrofiIaricide for O. Volvulus
and assessing impact of treatment need to be addressed by experts. But there are other issues
such as whether effective community participation can be maintained for 5, 12 or 20 years;
Achieving and maintaining high coverage rates and treatment in war and conflict situations,
where extensive consultation and participation of communities is essential. I am not sure that
there is adequate participation on these issues. We need to strengthen what APOC preaches,
participation, participation. If we don’t will make big mistakes. One example-medicated salt,
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Mto wa mbu Tanzania will do. Villagers may be illiterate but they are not stupid. If I were asked
to add another lessons from eradication effort I would say More faith in people.
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Dr. Moses Katabarwa
Community Participatoin

COMMUNITY PARTICIPATION

MN Katabarwa

Community participation implies:

a) a “critical mass” of community members having access to vital information regarding the
task to be undertaken;

b) respect and utilisation/discussion of their local knowledge;

c) a “critical mass” taking part in making decisions on who

∞ should carry out community/household census,

∞ collect ivermectin and

∞ distribute ivermectin,

Individual community members in a general community meeting decide also on the time
and place where distribution takes place and changing methods of service delivery to one
that is convenient and less costly to all etc;

d) responsibilities are identified and shared amongst individual community members and
programme staff or /donors especially where external resources/skills are involved.

The involvement of appropriate community structures (Uganda situation) resulted into:

a) zoning communities into kinship zones (respected traditional community structures) ensured
equity and accessibility of health services delivery, a high level of transparency and
accountability which resulted into individual members trusting the community-directed
programme.

b) selecting as many as possible community-directed health workers (CDHW) by their
relatives/neighbours (hence ratio of CDHW: households is equal or less than 1: 4-6);

c) community members or CDHW walking short distances to where the treatment services are
provided;

d) vulnerable groups such as elderly persons, children; pregnant mothers or those lactating
within a week of delivery and sick persons being catered for;

e) mass treatment being completed within a short time (mostly within 2 days); and

f) promotion of active involvement of women in ivermectin distribution.
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Potential for sustainable ivermectin distribution

Understanding community participation within the accepted community social structures and
their social legal systems ensured:

a) trust and respect of health care services delivered;

b) a “critical mass” of community members attending health education and being involved in
other community-directed activities such as selection of distributors, location of treatment
centres, period of distribution, and mobilisation of other community members for treatment.

c) equity and accessibility of services;

d) compliance, attainment and sustaining of a desired coverage (at least 90% of the ultimate
treatment goal);

e) support of service providers such as CDHW, and community supervisors and health workers;

f) involvement and service delivery to vulnerable groups such as the elderly, women youth and
children;

g) elimination of the concept and demand of external/monetary incentives as a prerequisite for
service provision;

h) transparency and accountability during health care delivery;

i) development of skills at the community level required for disease control and prevention;
and

j) appropriate allocation of responsibilities and strengthened the partnership between
communities, the public health care delivery services and donors.

Challenges for sustained and beneficial community participation:

a) synchronising public health delivery systems with traditional structures and systems;

b) empowering policy and decision makers with skills for enhancement of community
involvement;

c) timely generation and dissemination of valid information through research, on-going
monitoring exercises and evaluation etc;

d) aggressive promotion of dynamics of well researched and tested community-directed
initiatives/interventions; and

e) inadequate or lack of capacity to support services such as health education, training,
supervision and monitoring for enhancement of  community-directed initiatives by upper
levels of public health care delivery services run by local governments.
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Benefits of community participation:

a) it is cost efficient;

b) it equips community members with confidence and skills to manage CDTI activities as well
as other health and development challenges;

c) promotes equity, accessibility and trust  in health care delivery; and

d) it improves performance and sustainability of health programmes.
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Dr. Stefanie E. O. Meredith
Loa loa issues

TREATMENT WITH MECTIZAN IN LOA-ENDEMIC AREAS

SEO Meredith

The Mectizan Donation program is in its 15th year and more than 200 million treatments have
been administered in some 34 countries in Africa and Latin America. Mectizan is generally a
very safe drug with few post treatment effects, and those that occur are related to the effect of the
drug on the parasite and diminish with successive treatments as the parasite load is reduced.

As of January 2002, only 187 cases of Serious Adverse Events (SAEs) have been reported to the
MDP and Merck since 1989. However in 1994 a cluster of serious CNS events was reported
from Cameroon and it is now clear that there is a risk of encephalopathy in patients treated with
Mectizan for onchocerciasis but who also have high Loa loa microfilaraemias.  This syndrome
has been termed “ loa-related encephalopathy (temporally related to Mectizan administration)”
(MDP, unpublished document, 1996).

Out of the 187 SAEs reported, 159 have been from Cameroon, and the others have all been from
Loa-endemic countries, although the majority of those SAEs were not related to infection with
Loa loa.

The countries endemic for Loaisis are generally known to be in the humid forest belt of Central
Africa, with the most westerly focus in Benin and the eastern limits in Southern Sudan, though
there is a report of patients with “sheathed microfilaria” resembling Loa” from Ethiopia (White,
1977). Currently, the precise distribution of the disease is not known and the best proxy indicator
for loaisis distribution is based on the satellite mapping of the humid forest habitat of the
Chrysops vector (Thompson et al, 2000.)

To date, the SAEs associated with infection with loaisis have mainly occurred in Cameroon with
two possible cases from the DRC. The Mectizan Donation Program (MDP) organized a special
consultation in 1995 to review and asses the cases, develop a working case definition and better
define the known risk factors When some of the treatment programs on Cameroon started to
expand into new districts in 1999, another cluster of Loa-associated SAEs occurred and the MDP
organized a second special consultation. This consultation addressed the management of cases
and the SAE treatment guidelines were assessed and revised.

There is little doubt that the occurrences of the Loa-associated SAEs have impacted the
community –based Mectizan treatment programs in Cameroon. Therapeutic and geographic and
treatment coverages were reduced and compliance was very low.

The few known risk factors for the Loa- related encephalopathy temporally related to Mectizan
administration are as follows:

∞ Living in a loa-endemic area
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∞ The intensity of infection with L.loa > 8000 mf/ml blood (Gardon et al 1997)
∞ The prevalence of loaisis in the community
∞ Males appear to be more at risk

In particular, the following issues have important implications for policies regarding Mectizan
treatment in Loa endemic areas

∞ The need for better information on Loaisis distribution, endemicity and intensity of
infection.

Until recently, there was no reliable means of assessing the prevalence or intensity of infection
with Loaisis. However the new Rapid Assessment for Loa (RAPLOA), (TDR 2002) is a
promising tool for mapping and defining the distribution of Loaisis.

Recently, Boussinesq et al. (2001) have reported evidence of a direct relationship between the
intensity and community prevalence of Loa infections, which will also be important for defining
high-risk communities.

∞ The need for training of all levels of health personnel in the risk, recognition and
management of SAEs following treatment with Mectizan

∞ The need for assessment of the training of the health workers
∞ The status of health care facilities and infrastructure
∞ The communication and transport infrastructure and facilities
∞ The inclusion of the non-governmental health care providers in the training and

communication round Mectizan treatment in Loa endemic areas

A set of recommendations were developed by the MEC and Technical Consultative Committee
of APOC (TCC) and distributed to Loa-endemic countries. These recommendations can be
summarized as follows.

∞ Where 2 or more annual treatments with >60% coverage and no CNS events reported -
community-based or CDTI treatment.

∞ No previous treatment, fewer that 2 rounds of treatment,  <60% coverage, cases of
serious CNS events reported – Rapid Epidemiological Assessment (REA) to be carried
out to determine oncho endemicity.

∞ Mass treatment only for hyper-or meso-endemic communities with enhanced
surveillance, training and health education.

∞ In hypo-endemic communities, individual or clinic based treatments should be offered to
infected people following health education.

The implementation of these treatment policies clearly would have some implications for the
treatment programs, the national authorities and the NGDO partners.

If all TCC/MEC recommendations were implemented, there would be
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∞ Lower therapeutic coverage in many areas
∞ Safer treatment,
∞ Improved capacity of health centres and staff
∞ Increased cost to programs
∞ Some remote communities will not be treated

In Cameroon, there are two different situations to be considered when discussing treatment in
areas hypo-endemic for onchocerciasis and endemic for Loaisis.

1) Communities that were previously under mass treatment with Mectizan for
onchocerciasis, but with the REA, are now defined as hypo endemic and thus not eligible
for mass treatment.

In general, previously treated people should be offered annual treatment with Mectizan (as long
as no adverse effects have been experienced) through clinic, individual or other means. In certain
situations the epidemiological situation e.g. the number of hypo-endemic communities/meso-
hyper endemic communities, should be taken into account. It may be more cost effective to
continue mass treatment as long as the enhanced health training and surveillance is in place.

Additionally, access to the communities and health care facilities needs to be considered.

2) New program areas with hypo-endemic communities
Hypo-endemic communities should not have community directed treatment with
Mectizan (CDTI), but clinic or hospital based treatment. It is also recommended that all
persons requesting Mectizan for the first time should have a calibrated thick blood film
and should be treated with Mectizan only if negative for Loa or with >8000 mf/ml blood

To answer the main question of this meeting, can onchocerciasis be eliminated?

This is unlikely to happen in Cameroon, the DRC, Southern Sudan (Congo, CAR) unless
considerable resources are made available to build the capacity of the Ministries of Health and
improve health care infrastructure, country communications etc.
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Dr. Charles D. Mackenzie
Relevance of insecure endemic areas

THE IMPLEMENTATION OF MASS DRUG ADMINISTRATION IN AREAS OF CONFLICT

OVERVIEW OF PRESENTATION

CD Mackenzie, MA Homeida, I Mueller and M Ali

A.     INTRODUCTION

Internal conflicts are depressing shadows hanging over mass drug administration programs for
diseases such as onchocerciasis. It is easy to become depressed about the challenges of political
unrest and its dampening or blocking effect on Mass Drug Administration of Mectizan® for
onchocerciasis, or in fact any health problem. Indeed, one could reflect on the number of people
still not fully covered by the treatment program in countries such as such as DRC, Rwanda,
Sierra Leone and elsewhere. It is also perhaps all too easy to not address the needs of such
countries, and to ignore the challenge of finding ways to get treatment active in these countries
now; there is a tendency to wait until there is no conflict.

This presentation will highlight a positive approach taken by the Sudanese and their partners in
the onchocerciasis program and the successes they have had. It is vital to address each situation
of internal conflict individually, to do this now, and to develop logical approaches to their
specific challenges to effective local MDA.

B.     CONFLICT
_ Definition of conflict

_ Onchocerciasis endemic countries suffering from internal conflict

_ General effects on health programs

C. THE PROBLEMS CONFLICT CAUSES TO ONCHOCERCIASIS PROGRAMS
_ Mobility of the target population

_ MDA is based on a sedentary population

_ Lack of commitment willing people

_ Loss of trained personnel

_ Movement of drugs to the areas is difficult

_ The situations continually subject to change

_ Communication and follow up assessment is problematic

_ International negativity to such countries

_ Financial implications

_ Chronic diseases are not seen as the same as Acute Problems
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D.    A CASE IN POINT – The Republic of Sudan
_ History

_ Events in addressing the issue of “conflict & health”

_ The Carter Ceasefire situation 1995

_ Successes

_ The principles applied in Sudan
_ Two systems, but well coordinated
_ The role of NGOs
_ More verticality than other approaches
_ Trust must be build and fulfilled
_ Long term commitment
_ Endurance
_ Programme based on non-governmental organization
_ International support G2000, MSU, etc.

E.   SOME GENERAL PRINCIPLES TO APPLY IN CONFLICT AREAS
_ The people’s view of disease versus the politician’s view

_ Health as a non-political issue

_ Role of women

_ Role of the education & the family

_ MDA as a “peace tool”

_ Onchocerciasis is a “people” issue – not essentially a “political ball”

_ Use it to develop health infrastructure

_ Depends on the level of ferocity of the war

F.   WHERE TO GO FROM HERE
_ Where we need to focus

_ Approaches made country by country

_ Use opportunities for development

_ Identify champions, dedicated people

_ Communication outside the political arena

_ What philosophical approach

_ Be flexible

_ NGDO are important
¬ G2000 & MSF examples

_ Establish formal connections at the United Nations level

_ Need to identify and treat conflict countries differently – either informally or formally



106

_ Give support

_ What not to do!

G.  IS IT A BLOCK TO TOTAL ERADICATION?
_ Is rather a speed bump
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Dr. Deborah A. McFarland
Long-distance human migration

FEASIBILITY OF ONCHOCERCIASIS ERADICATION:  POLITICAL/SOCIAL ASPECTS

EFFECTS OF HUMAN MIGRATION ON DRUG DELIVERY, COVERAGE,
SUSTAINABILITY AND HEALTH SYSTEMS

DA McFarland

Just as understanding the movement of the black fly vector is important to understanding the
transmission of onchocerciasis, so appreciating the movement of people and populations is
important for operational aspects of onchocerciasis control and elimination.

The reality is that people move.  Migration is a fact of human existence.  It has always been a
key feature of people’s survival and advancement strategies.  This is particularly true of Africa.
It has often been observed that there are few other regions in the world where the population is
so mobile.

Internal migration accounts for most migration in Africa.  Most people who move do so within
their own country.  Good data on migration patterns within countries are scarce.

Intra-regional migration is also important in Africa with people and populations moving into
neighboring countries.

There are two major categories of migration – voluntary and forced.   Voluntary migration is
rarely a truly ‘voluntary’ activity.  Certain people lacing resources such as money, information,
and connections may not even have the choice to move.

Forced migration results in two categories of migrants – those who are internally displaced in
their own country – IDP’s – and those who are move across borders and thus become refugees.

Why do people move or migrate?  They do so for a host of demographic, economic, social,
political and cultural factors.  These include:

_ Migration is a way of life – e.g. nomadic populations

_ Rapid growth in the population and the labor force

_ Sharp rises in un-and underemployment

_ Decreasing real incomes and growing costs of living

_ Low agricultural production

_ Food shortages

_ Political instability

_ Ecological disasters – e.g. volcanic eruption in Goma in last 2 weeks
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Show three maps of APOC countries that indicate the movement of people within the respective
country because of conflict or strife.

_  Nigeria – large, recent population movements in highly endemic oncho areas, e.g.
Taraba State, Kaduna State

_  Guinea, Sierra Leone and Liberia – the nexus of these three countries, two OCP
countries and one APOC country.  Previously have looked at the migration of the black
fly in this area.  Also have massive population movements

_ Uganda – less dramatic in terms of numbers, but a combination of IDP’s and refugees,
again in oncho areas.

The decision to migrate or move is rarely made by individuals acting on their own.  It involves
entire families as well as wider social structures and networks.  This has implications for the kind
of kinship structures that Katabarwa has described as key to the selection of CDD’s and for
legitimate community directed programs.  The decision to migrate concerns not just those who
go, but also those who stay, and are closely related to the nature of the household economy.  We
need to understand the motivations and incentives of those who move and their economic status.

The implications of migration on the issue for this conference, i.e., the eradicability of
onchocerciasis are:

_ Drug delivery and coverage
_ Census – who is where and when?  The issue of what is the denominator is key for

assessing coverage

_ Selection of CDD’s and integration into the community – migrants may be viewed as
outsiders and not be party to the networks used to select CDDs and to determine
treatment.  Those migrants are more likely to refuse or to be absent during the
treatment round.

_ Underscores the need for segmented treatment strategies – those that are culturally and
socially specific

_  Security and access issues – well described by Charles MacKenzie in the previous
presentation

_ Increasing marginal cost of reaching hard to reach populations

_ Continuity of a long term program over 12-15 years

_ Migrants may be reservoirs of disease moving across areas where treatment coverage
may not be occurring.

Implications for sustainability
_  Government commitment and financing may be difficult to achieve for populations

that are considered outsiders and not part of community fabric.  Most obviously true at
district, LGA level



109

_ How to deal with IDP’s versus refugees – different levels of support

_  Poverty of communities – we must never forget that we are dealing with poor
communities

Turning to a different area, but one critical to sustainability of oncho control/elimination is the
issue of the effects of eradication programs on health systems.  There is considerable controversy
about this.  Most of the evidence we have comes from the polio eradication program.

The positive effects of polio eradication appear to be:

_ Strengthened management systems
_ Improved social mobilization
_ Increased surveillance laboratory capacity
_ Increased confidence in the health system and politicians to deliver something tangible

The negative effects of polio eradication are:

_ Missed opportunities for other preventive strategies with the exception of Vitamin A
distribution

_ Disruptions in health care delivery
_ Mixed signals to communities regarding incentives for community workers
_ A top down, global priority rather than a community priority

Importance of health systems highlighted by WHO in the World Health Report, 2000, that
ranked the performance of health systems around the world.

Maps show that poor countries spend a significant proportion of their GDP on health
expenditures.  Need to ensure that the money is “well spent”.   There is not a direct relationship
between performance and resource allocation.  Some of the poorest countries rank in the middle
range of health systems performance.  And some of the richest countries, e.g. U.S., rank lower
than far poorer countries.

Conclusions

_ Migration of populations, either voluntary or forced, is inevitable presenting difficult,
but not insurmountable challenges for operations of oncho programs

_ Biggest challenge is sustaining the political will of donors, national governments and
communities to keep on keeping on

_ Health systems and health delivery infrastructure, already fragile, cannot and must not
be ignored in designing elimination and eradication strategies.
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Dr. Achim Hörauf
Introduction to onchocerciasis work at the Hamburg conference

RESEARCH NEEDS: INTRODUCTION TO ONCHOCERCIASIS WORK

AT THE HAMBURG CONFERENCE

A Hörauf

September 19-23, 2001 saw the Bernhard Nocht Institute for Tropical Medicine and WHO/TDR
host an international conference in Hamburg, Germany to review recent achievements in
research and control of onchocerciasis and lymphatic filariasis. More than 100 scientists
representing 22 countries provided a unique assemblage of expertise in filariasis gained both
“from the field and from the laboratory.”  At a time when "Global Alliances" have been formed
to eliminate lymphatic filariasis and onchocerciasis as public health problems, this meeting
focused on both, recent research advances and future research needs required to sustain these
programmes and achieve their goals.

With regard to updating on research advances, the Hamburg conference which was made
possible to a large extent by a contribution of the German Ministry of Health to the WHO/TDR,
can be seen as standing in a series of other conferences over the last decades such as the
conferences on onchocerciasis research to develop a vaccine, funded by the Edna Mc Connell
Clark Foundation, or the Wellcome Trust series of conferences on filariasis research. The latter
were continued at the Bernhard Nocht Institute on a bi-annual mode and finally resulted in the
European Filariasis Conference held in September 2000, celebrating the 100th anniversary of the
Bernhard Nocht Institute.

Major topics at the Hamburg Conference 2001 have been summarized in a conference report in
Trends Parasitol. (2001) 17:566-7 (abstracts can be downloaded as a PDF file from the BNI
homepage, http://www.bni-hamburg.de ->Willkommen -> Aktuelle Mitteilungen und
Veranstaltungen -> Archiv -> Mitteilungen 2001 -> Internationale Filariasis Konferenz). They
comprised research in both, onchocerciasis and lymphatic filariasis, and also in loiasis. Despite
cancellations (the conference took place one week after the World Trade Centre attack) many of
those who had to cancel still managed to give important input through e-mailed presentations
which were held by their colleagues.

Prior to the conference, after discussions between the organizers of the Atlanta conference and
the WHO/TDR co-organizers of the Hamburg conference, it was considered that the Hamburg
conference would provide an excellent opportunity for a review of the state of the art in
chemotherapy, diagnostics, immunology and drug development, since many of the leading
experts in these topics would be present. Accordingly, the last day of the Hamburg conference
was reserved for break-out into discussion groups whose task was to provide reviews of these
topics including further research needs, with special emphasis on onchocerciasis, for presentation
at the Atlanta conference. In the following presentations, the rapporteurs will give their
summaries that are based to a large part on the results and reserach needs identified during the
Hamburg Conference 2001.
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Dr. Dietrich W. Büttner
Update on existing drugs

RESEARCH  NEEDS: UPDATE ON EXISTING DRUGS FOR ONCHOCERCIASIS

DW Büttner and A Hörauf

Introduction

Chemotherapeutic mass treatment of human onchocerciasis needs drugs effective against
microfilariae (mf) or juvenile or adult female or male worms. Because of the rather short life of
infective (L3 a few days) or fourth stage larvae (L4 a few weeks) these are no good targets for
chemotherapeutic mass treatment. They would demand either a drug depot or frequent
administrations. A final conclusion on the efficacy can only be based on studies on human
patients. The results of tests on Onchocerca volvulus in vitro or in laboratory rodents are only
preliminary and experimentally infected chimpanzees are almost not available. Therefore,
existing drugs are those that have shown their efficacy in human onchocerciasis patients. The
number of these drugs is limited and most of them are considered to be not suitable for mass
treatment. Some of them are presently not produced. Regarding the costs and the time needed for
development the research should focus on drugs that have already been registered for use in
humans.

Overview of existing drugs

Both macrofilaricidal drugs, melarsoprol (trimelarsan) and suramin are used for the treatment of
African trypanosomiasis. Because of their toxicity and the mode of administration demanding
repeated injections they are presently no longer considered to be suitable for mass treatment of
onchocerciasis patients. The macrofilaricidal activity of amocarzine is doubtful and it is toxic. Its
development has been stopped before registration.

Among the microfilaricidal drugs, ivermectin is presently the drug of choice for onchocerciasis.
Diethylcarbamazine (DEC) was previously widely used for onchocerciasis and lymphatic
filariasis, but because of its adverse side effects, it is presently not recommended for
onchocerciasis patients.  Metrifonate, an organophosphate, that had been used for human urinary
schistosomiasis, is no longer produced by Bayer. Suramin, amocarzine and the benzothiazole
CGP 20376 are probably too toxic. Extracts from the bark of Cassia aubrevillei containing
chrysophanic acid, which are frequently used as a traditional herbal drug in Liberia have only
been studied with limited numbers of patients.  However, a careful search may reveal other
traditional herbal drugs with antifilarial activity.

Embryotoxic drugs are ivermectin, the benzimidazoles albendazole and mebendazole citrate,
and suramin. The embryotoxic activity of ivermectin and of the benzimidazoles does not cause
sterility of the female worms, at least not as long as the presently used regimens are
administered, and the female worms recover after a few weeks (benzimidazoles) or after about 8-
12 months (ivermectin).  A combination of ivermectin with albendazole did not show a better
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efficacy than ivermectin alone. A long lasting inhibition of the embryogenesis has so far only
been observed after therapy with doxycycline, that eliminates the endobacteria of O. volvulus.

Concerning the mentioned existing drugs more research may be needed on ivermectin alone and
its combination with other antifilarial drugs and on antibiotics eliminating the onchocercal
endobacteria.

Ivermectin

The administration of ivermectin may need further research. Several results of previous studies
on ivermectin and moxidectin suggest that the regimen of ivermectin administration can
probably be designed more effectively. Can higher doses (400 microgrammes/kg or more)
administered more frequently (every 3 – 6 months) for several years (2-5 years) prevent male
worms from mating or cause sterility or kill the adult worms?

If the development and spreading of ivermectin resistant O. volvulus is considered to be a real
risk, research may be needed to prevent this or to delay it, and a reserve microfilaricidal drug
may have to be developed in time to replace ivermectin.

For the prevention a multidrug regimen combining ivermectin with another microfilaricidal drug
may be suitable. DEC is no longer used for human onchocerciasis because of its adverse side
effects. However, after elimination of most microfilariae by ivermectin the adverse effects
caused by a few resistant microfilariae treated with DEC may be negligible. Alternatively Bayer
or another company may be asked to produce at least enough metrifonate for clinical trials to
study the effects of a single dose of metrifonate administered after ivermectin. Moxidectin is not
mentioned here since it is not yet an existing drug for O. volvulus.

Antibiotics

Many filariae harbour endobacteria in the hypodermis, in oocytes, all embryonic stages and
microfilariae. All O. volvulus  worms from Yemen, Mexico, Guatemala, Brazil, and  8 African
countries that were examined presented large numbers of endobacteria in their tissues. These
endobacteria of the genus Wolbachia belonging to the Rickettsiales are sensitive to several
antibiotics among which the tetracyclines have been examined most widely. The Wolbachia can
be eliminated by antibiotics and the removal of the endobacteria has several effects on the
filariae, which vary depending on the treatment regimen. Usually an interruption of
embryogenesis was observed. The most promising result was seen in cattle infected with O.
ochengi, where tetracycline showed macrofilaricidal activity. Some of the effects of tetracycline
are probably independent of the antibacterial activity and they may have been caused by the
antibiotic itself as prevention of larval moulting. Antibiotics that have shown in vivo activity
against Wolbachia are so far tetracyclines, rifampicin and less effectively chloramphenicol.
Further experiments may identify a few more antibiotics, e.g. azithromycin.
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Doxycycline trial with onchocerciasis patients

Based on the promising results of the animal experiments, onchocerciasis patients have been
treated since l999 in hyperendemic villages in south-western Ghana along the Ofin river. The
patients received 100 or 200 mg doxycycline per day for several weeks. The activity against the
endobacteria and the filariae was evaluated by examination of microfilariae in the skin and of the
adult worms in extirpated onchocercomas 2-18 months after the begin of the chemotherapy.
Microscopy, immunohistology and PCR were used for the assessment. So far mainly the results
of the treatment with l00 mg doxycycline per day for 6 weeks are available. The activity of
doxycycline in human onchocerciasis observed was the following:

_ Elimination  of endobacteria,
_ blockade of embryogenesis,
_ decreased insemination of female worms,
_  and with ivermectin given after doxycycline a strong and sustained (18 months)

reduction of microfilaria loads to levels < 0.3 mf/mg.

This regimen was neither distinctly macrofilaricidal nor microfilaricidal and it caused no obvious
inhibition of spermiogenesis.

Preliminary results achieved with other doxycycline regimens indicated the following:

_ 100 or 200 mg doxycycline per day for 2 weeks did not eliminate the endobacteria or
interrupt the embryogenesis.

_ 200 mg doxycycline per day for 4 weeks may have the same efficacy as l00 mg for 6
weeks.

_ Two or 3 additional weeks of  treatment with doxycycline administered after intervals
of 2 months do probably not enhance the efficacy significantly.

More research is needed since the present regimen of doxycycline administration is not
applicable for general mass treatment because of the long duration of the therapy, the exclusion
of pregnant women and of children less than 9 years old.

_ The minimal duration of doxycycline treatment has to be identified.
_ Periods of observation longer than l8 months may be needed.
_  The efficacy of other antibiotics and of combinations has to be studied, e.g. of

rifampicin and azithromycin.
_ The optimal timing of ivermectin administration after therapy with antibiotics has to be

identified.
_ Regarding the results seen with O. ochengi one may search for a regimen that has a

macrofilaricidal effect.
_ (It has to be investigated which other research is needed due to legal implications.)
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Preliminary indications

The preliminary indications for individual or group treatment of onchocerciasis patients with l00
mg doxycycline per day for 6 weeks followed by 1 or 2 doses of ivermectin may be the
following:

_ Patients who migrate from endemic areas to controlled areas.
_  In controlled areas (OCP and America) remaining or newly arrived patients,

microfilariae carriers and prepatent individuals.
_ For such small groups of patients administration of antibiotics for several weeks plus

ivermectin may be more advantageous than several years of ivermectin treatment, wich
does not eliminate all microfilariae thus leading to continued transmission.
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Dr. Allan T. Hudson
Update on development of new drugs

DEVELOPMENT OF NEW DRUGS FOR ONCHOCERCIASIS

AT Hudson

The management of onchocerciasis is dangerously dependent upon the use of one drug,
ivermectin. New medicaments are urgently required, primarily to act against adult worms –
either by having a direct macrofilaricidal action or by effecting permanent sterilisation. There is
also a secondary need for an oral microfilaricide which would not be cross-resistant to
ivermectin. In this summary the immediate prospects for new drugs are reviewed along with the
strategies which could significantly impact upon the earlier stages of the discovery research
pipeline.

Drug discovery research is an iterative, multi-disciplinary process with an increasing rate of
attrition as compounds pass along the pipeline into the clinical phase of testing. It consists of a
number of distinct stages:

1. Target identification/validation
2. Assay development
3. Lead identification
4. Lead optimisation
5. Pre-clinical development
6. Clinical evaluation

In order to be sure of success the pipeline must be fed with a steady flow of  active molecules -
‘hits’- identified from discovery screens and then modified through lead optimisation
programmes into efficacious, metabolically robust molecules with healthy therapeutic indexes.
Currently the onchocerciasis pipeline is grossly unbalanced with 2 compounds in the clinical
phase of testing, doxycycline and moxidectin, and then virtually nothing else other than very
early stage research programmes which have yet to yield credible lead molecules.

Compounds in clinical development

Recent in vitro and in vivo data have provided circumstantial evidence for the essential role of
Wolbachia endobacteria in symbiosis with all the human filarial nematodes (for recent review
see Taylor MJ, Hörauf A. A new approach to the treatment of filariasis. Curr. Opin. Infect. Dis.
2001; 14; 727-731).  Various antibiotics show anti-filarial effects on Wolbachia-positive worms
yet lack activity on the Wolbachia-negative species Acanthocheilonema  viteae.  Clinical
evaluation of one such antibiotic, doxycycline, shows that in ivermectin-treated patients the drug
causes long-term sterilisation of O. volvulus adults when 100mg per day are administered orally
for 6 weeks. In addition to decreasing microfilariae levels, in support of an anti-Wolbachia mode
of action, doxycycline virtually also eliminated the bacteria (Hörauf A, Mand S, Adjei O,
Fleischer B, Büttner DW. Depletion of Wolbachia endobacteria in Onchocerca volvulus by
doxycycline and microfilaridermia after ivermectin treatment. Lancet 2001 May 357;
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9266; 1415-6.). Because doxycycline is contraindicated for children or pregnant women it will
not be possible to use the drug with the current dosing regimen for mass treatments. Alternative
dosing schedules, or other licensed antibiotics may offer opportunities for clinical usage beyond
individual treatments, e.g. rifampicin – see Townson S et al. Antibiotics and Wolbachia in filarial
nematodes: antifilarial activity of rifampicin, oxytetracycline and chloramphenicol against
Onchocerca gutturosa, Onchocerca lienalis and Brugia pahangi. Ann. Trop. Med. Parasitol.
2000; 94; 801-816. More long term it should be possible to identify novel anti-Wolbachia agents.
However, before investing too much in such work it would be prudent to provide more direct
evidence at the molecular level for the central role of Wolbachia in the mode of action of the
anti-filarial antibiotics.

Moxidectin, an analogue of ivermectin, is in widespread use as a veterinary anthelmintic.
Promising data has been accrued on the potential of this drug in the treatment of human filariasis.
Although the compound is little different to ivermectin when tested in vitro against microfilariae,
in vivo it shows significant advantages being both more active and persistent (Tagboto SK,
Townson S. Onchocerca volvulus and O. lienalis: the microfilaricidal activity of moxidectin
compared with that of ivermectin in vitro and in vivo. Ann. Trop. Med. Parasitol. 1996; 90(5);
497-505.). In addition it has shown macrofilaricidal effects against B. pahangi in dogs, a single
dose of  1000_g/kg giving complete clearance of adult worms (McCall J. et al. Poster presented
at the Amer. Soc. Trop. Med. Hyg. Annual Meeting, Washington D.C, November/December
1999). The compound has now entered into the clinical phase of evaluation, initially being
studied in healthy volunteers.
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Pre-clinical research

In the last decade the early stages of the drug discovery research process have changed
dramatically, driven by advances in molecular biology and automation which at the beginning of
the 90’s ushered in the era of high throughput screening (HTS). This is turn created an insatiable
demand for compounds which was met by medicinal chemists devising combinatorial synthesis
strategies which allowed large and diverse chemical libraries to be rapidly generated.
Concomitantly, this demand for compounds led to the establishment of commercial suppliers of
both proprietary and non-proprietary compound libraries. HTS coupled with a ready supply of
test compounds is now viewed as the obvious strategy for attacking the flood of molecular
targets which are starting to emerge from the huge investment in genomics. Increasing attention
is also being paid to virtual screening as a cost-effective way of achieving far greater molecular
diversity than can ever be attained by laboratory syntheses. The hits identified in silico are used
as the basis for creating focussed libraries usually made up of 1, 000 - 10, 000 compounds as
opposed to the more normal 100, 000 to 1 million used in ‘real’ HTS campaigns.

Unfortunately it is not been feasible until very recently to apply the modern pharma research
paradigms to the discovery of new anti-Onchocerca agents. This is because of limitations in
compound supplies and difficulties in carrying out HTS campaigns in non-commercial centres.
However, it is now possible to purchase large numbers of compounds from the 40 or more
commercial suppliers and also to commission specialist companies to develop protein-based
assays suitable for HTS format. The latter can then run campaigns screening whatever numbers
of compounds are thought necessary to identify credible leads. On-going work recently funded
by the WHO include tRNA synthases from Onchocerca and secretory venom allergen-like
proteins and nuclear receptor (NR) transcription factors from C. elegans.

Providing the appropriate finances are made available to allow purchase of compounds and
commission screening, it should now be possible to harvest the most attractive of the molecular
targets starting to emerge from analysis of the genomes of Brugia malayi, Onchocerca volvulus
and Wuchereria bancrofti. However, it has to be recognised that such investment will lead to the
identification of lead compounds, not drugs. Consequently there has to be funding and
management strategies in place to facilitate progression of such compounds through the often
most difficult and rate limiting stage of the drug discovery process – lead optimisation. It may
well be that in order to achieve success a new management system might have to be instigated,
for example along the lines of the recently established Medicines for Malaria Venture. The latter
in the short space of several years has built, financed and is managing a complete anti-malarial
drug discovery pipeline and there seems no reason why a similar filariasis-focussed organisation
shouldn’t be equally successful.
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Dr. Gary J. Weil
Update on diagnostics

UPDATE ON DIAGNOSTICS FOR ONCHOCERCIASIS ERADICATION

G J Weil

Introduction:  Any program for onchocerciasis eradication will need efficient means for
identifying endemic areas to be targeted for intervention, for monitoring changes in infection
rates and transmission during the course of the program, for determining whether the goals of the
program have been achieved (“certification”), and for post-eradication surveillance.

Identification of endemic areas:  Control programs such as OCP and APOC are aimed at
preventing disease.  Rapid assessment methods (e.g., leopard skin rates in men) were developed
as surrogates for parasitology screening to efficiently identify areas at greatest risk for blinding
disease.  However, such low-tech rapid assessment methods are not sensitive enough for
eradication programs.  Eradication programs need to identify all endemic areas, not just those
with high disease rates and risk.  Diagnostic methods must be cost effective, reasonably
sensitive, very specific, and acceptable to target populations.

Assessing progress toward elimination / eradication:  In addition to information on the
presence or absence of onchocerciasis, eradication programs also need to be able to document
changes in infection rates and transmission over time.  It will take many years to achieve
eradication of onchocerciasis.  Sponsors and other stakeholders will want to see objective data
from time to time on effects of the program on infection rates and transmission.  The keys here
are selection of sentinel study sites and standardization.  Tests and sampling methods must be
standardized to permit “apples to apples” comparisons over time.  Training materials and
regional workshops will be needed to increase uniform implementation of the agreed-upon
standards.

Use of diagnostic tests to define program success:  Diagnostic tests will be critically important
as tools for knowing when to declare victory in areas/countries.  Clear goals need to be set early
on to know when to stop treating formerly endemic areas and move on to post-eradication
surveillance.  Diagnostic tests for this purpose need to be focused on detecting current or recent
transmission.  Such tests need reasonably good sensitivity, but specificity is perhaps more
important if we want to avoid needless prolongation of intervention activities.  There is no
current consensus on the optimal tools and targets for this purpose.

Available tests for human infection / exposure to onchocerciasis

Clinical examination (skin, nodules, slitlamp exams) is a start, but this is not sensitive enough
for any stage of eradication programs.  Also, disease is a poor indicator of ongoing transmission.
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Skin snips for microfilariae (MF): Skin snips are insensitive for detecting early (prepatent) or
low intensity infections.  This test is inconvenient and somewhat invasive; some populations
refuse skin snips because they fear transmission of blood-borne diseases.

Diethylcarbamzine (DEC) patch test: Filter paper with DEC cream is placed on the skin under
a bandage, and the test is read after 48 hours.  A papular skin rash indicates local death of
microfilariae.  This method was described many years ago and recently restudied by OCP in W.
Africa (Toe et al, Trans Roy Soc TMH 2000).  Briefly, the sensitivity of the test was only fair
(56-80%) in people with positive skin snips.  Patch test rates correlated well with MF prevalence
rates in untreated populations, and the authors recommended the test as an alternative to skin
snips.  However, there are lingering questions about specificity, and some patients develop
significant adverse reactions to the DEC cream.  The direct cost of materials is only $0.12 per
test, but the need to read the test at 48 hours decreases its field applicability.

Parasite DNA detection by PCR:  Onchocerca DNA can be detected by PCR amplification of a
150 bp repeated sequence in genomic DNA, the O-150 repeat.  The method (described by P.
Zimmerman and T. Unnasch) involves several steps: Isolation of DNA from skin snips or
scrapings, PCR with genus-specific primers, and detection of amplified product with a species-
specific oligonucleotide probe.  This is the only method available that can distinguish forest and
savannah strains of O. volvulus, and it is the most sensitive method developed to date for
detecting O. volvulus parasites in human skin.  PCR is also much more sensitive than dissection
with microscopy for detecting O. volvulus larvae in flies, and it can easily distinguish O. volvulus
larvae from related animal parasites in black flies.  Pooled samples of flies can be tested to
improve the cost effectiveness of this test, and the test has been successfully used for years in
endemic country labs in West Africa and Latin America.  However, this is still an expensive test,
and it is very demanding in terms of laboratory infrastructure and skilled personnel.

Antigen detection:  This option has been extensively explored by several research groups.  O.
volvulus antigen is sometimes detectable in sera or urine from infected patients, but the
sensitivity of antigen testing is too low for it to be practically useful.

Antibody assays:  Recent advances in this field have included identification of several O.
volvulus-specific recombinant antigens and the demonstration that specificity can be improved
by measuring IgG4 subclass antibodies.  The recent success of a rapid format card test for
lymphatic filariasis prompted us to explore this technology for onchocerciasis with recombinant
antigen Ov16 (Lobos et al, Science 1991).  Prior studies showed that an ELISA based on this
antigen was sensitive and specific for onchocerciasis and that antibodies to Ov16 often
developed in experimentally infected primates and naturally exposed children long before the
first appearance of MF in skin snips.  AMRAD ICT in Australia developed a prototype card test
that detected IgG4 antibodies to the antigen in 15 minutes.  The card test was first evaluated with
selected sera in two labs (Weil et al., J Inf Dis 2000).  The test had a sensitivity (vs. skin snips)
of 90% and excellent specificity.  Sensitivity was the same for sera from Africa and Latin
America and also equal for sera from children and adults.

The next step in the evaluation was to try the card test in the field.  The company modified the
test for use with fingerprick blood samples and packed the tests in the “rapid assessment kit”
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format.  Field studies were performed in late 1999 in collaboration with the OCP in West Africa.
These studies compared the sensitivity of the card test with skin snips in villages with differing
levels of endemicity.  Over 1,500 people were tested.  The test was well accepted by the people
(adults and children).  Sensitivity compared to skin snip was 81% overall (75-95%).  Higher
values were seen in villages with low infection intensities following treatment than in untreated
hyperendemic villages.  As with the DEC patch test, many residents of endemic villages with
negative skin snips had positive antibody tests, and antibody rates correlated well with MF
prevalence rates in untreated villages.  Sensitivity was equivalent in children and adults.
Specificity results were reassuring.  Only 2 of 160 people under age 20 in formerly
hyperendemic villages where transmission had been interrupted for 20 years had positive tests,
and these were recent migrants.  Many older adults in these villages had positive antibody tests.
These results emphasize the need to focus on young children when using the card test in
eradication programs.

Over the past year, a number of groups have used the Ov16 antibody test in different settings in
Latin America and Africa.  Approximately 12,000 tests were used, with the greatest numbers
being used by OCP and OEPA.  In general, their results have confirmed our early field
experience with the test.  Sensitivity was fairly good, but variable (range 70 to 100 % for blood
from people with positive skin snips).  Perhaps more importantly, seroprevalence rates in
children were consistent with expectations, with no unexplained positives in children borne in
areas where transmission was interrupted and many positives in areas with ongoing transmission.
Specificity was consistently excellent; studies by Drs. Brattig and Buettner in Hamburg showed
that sera from patients with M. streptocerca were not reactive in the assay.  They also found that
the test worked well with sera from an area of Uganda with a high prevalence of HIV.  The main
advantages of antibody detection are simplicity and sensitivity for early infections.  The card test
is a very convenient means of detecting antibodies.  People do not mind providing finger prick
blood; this method is widely employed for malaria screening.  The test provides a rapid result on
the spot with a standardized format.  It does not require extensive training, expensive equipment,
or transportation of specimens to central laboratories for testing.  One limitation of antibody tests
for onchocerciasis is that they not provide proof of current infection with sexually mature O.
volvulus parasites.  Antibodies to Ov16 may indicate current mature infections, prepatent
infections, past infections, or even heavy exposure to O. volvulus.  Despite this caveat, these
results suggest that the Ov16 antibody test should be useful in the clinical setting for confirming
the diagnosis in individual patients suspected of having onchocerciasis.  More importantly, the
test has great potential as a tool for large scale efforts to eradicate onchocerciasis.  First, antibody
testing can be used as a primary surveillance tool for efficiently detecting infections and recent
transmission in untreated communities.  Second, the card test may be useful for monitoring the
success of control programs that aim to interrupt transmission.  For example, serial surveys of
antibody prevalence rates in young children or studies of seroconversion rates in children may be
practical and useful approaches to this pressing problem.  Antibody testing should be especially
useful for detecting ongoing exposure to the parasite in areas where MF rates have been reduced
by ivermectin therapy.  Finally, antibody testing of standardized samples of children may be
valuable in the later stages of eradication programs as a tool for detecting residual foci of
transmission or for documenting the absence of transmission.
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Availability of antibody testing:  The Ov16 antibody card test is not available commercially.
Prototype tests used in field studies were manufactured in Australia by AMRAD ICT.  AMRAD
ICT failed financially, and a successor company in the USA has made a business decision that
they are not going to produce the tests.  This is because they believe the market is too small and
uncertain for them to invest the money needed to develop the test and obtain regulatory approval.
The antigen can be used in other formats; we have identified a company outside of the USA that
is beginning studies that may lead to a new rapid antibody test based on OV16.  But in the end,
the market may fail us here.  Just as ivermectin is subsidized, subsidies may also be required if
we are to have diagnostic tests needed for eradication of onchocerciasis.

Which test(s) to use for eradication programs?:   There is no consensus on this at this time.  In
my opinion, different tests may be needed for different phases of the eradication program.
Antibody testing, skin snips or the DEC patch test could be used to identify endemic areas.  I
think that antibody testing of standardized samples of young children (3 to 5 years of age) would
be an efficient way to go for monitoring progress and for certifying eradication.  I also think that
parasite DNA detection in Simulium vectors should be used as a second tool for monitoring
progress and for certification.

Recap: Different diagnostic tools may be needed for different phases of an eradication program
for onchocerciasis (primary surveillance or mapping, interim monitoring, certification, and post-
eradication surveillance).  Specificity is more important than sensitivity, especially in later
phases of the program.  New tools include the rediscovered DEC patch test, parasite DNA
detection in skin and flies by PCR, and a rapid format antibody assay for use in the field.  No
eradication program will be successful without good diagnostic tools.  However, more thought
and discussion are needed to determine the best ways to use these tools and to develop standards
for the program.  Help is also needed to encourage commercial development of an antibody test
for field use.
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Working Group #1:
Presented by DH Molyneux 
 
 

FEASIBILITY OF 
ERADICATION WITH 

IVERMECTIN

                          

• No evidence is available that onchocerciasis 
is eradicable with currently available tools  
and at current levels of resourcing.

• There is evidence from the Americas and 
some sites in Africa that transmission can be 
interrupted in isolated foci.  This  must occur 
before eradication can be achieved.

 

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

AFRICA
• “use of ivermectin does not give a secure and 

consistent interruption of transmission”
• When ivermectin is used effectively interruption of 

transmission has occurred
AMERICAS
• “When ivermectin is used effectively 

interruption of transmission has occurred”

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• There is no area where there is clear evidence that 
transmission has been interrupted with strategies 
based on only ivermectin.

• Areas where transmission interruption may have 
occurred but evidence (entomological data) is not 
available (Senegal 2 x 12 yrs; Mali annual 12 yrs).

• Despite high annual coverage over 12 years 
transmission has continued in several foci (Togo, 
Cameroon).

 

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Semiannual treatment in parts of Ecuador, 
Mexico and Colombia has interrupted 
transmission.

• Foci in Venezuela, Brazil, Mexico and 
Guatemala transmission has probably not yet 
been interrupted due to low therapeutic and 
geographic coverage.  

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

AFRICA ONCHOSIM
• Onchosim model has predicted that in isolated foci 

ivermectin treatment could interrupt transmission.
• However in the African situation, migration coverage 

issues and fly migration perturb predictions.
• Onchosim for isolated foci is too optimistic in its 

predictions after 12 years treatment regimens.
– 3 separate situations when modeled, did not fit data, 

especially after more than 5-10 tx rounds
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FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

AMERICAS
• SIMONa simulation of specific foci in Ecuador match 

available data following 11 years of semiannual 
Mectizan® and predict interruption of transmission 
and eventual elimination of onchocerciasis with this 
strategy.  This could be extrapolated to most 
American foci.

• It is proposed that modeling should be applied to 
African and American data in a comparable way.

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Complete geographical coverage and high 
therapeutic coverage (avoid systematic non 
compliance) 

• Human migration/fly migration
• Continued efficacy of Mectizan®
• Available human resource capacity
• Endemicity levels

 

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Political Will
– Donors ($)
– Merck commitment
– Host countries (stability, $)
– NGO community
– International agencies
– Sustained active and inclusive partnership
– Regional collaboration
– Disease of Poverty-poor people, poor countries, no threat to 

the West

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Drug Issues
– Merck commitment
– Safety
– Acceptability
– Potential for resistance
– Over dependence on single drug

 

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Operational Issues
– Migration

• Human 
• Vector

– Loa Loa
– Conflict Situation
– Seasonality of transmission in Americas and 

savanna sites in Africa

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Health Systems Issues
– Reform process
– NGDOs
– Priority level/Burden of disease
– Drug delivery systems
– Human capacity
– Potential for integration with other programmes
– Disease of poverty
– Regional collaboration
– CDTI is driver for integrative intervention in Africa
– Drug brings additional health benefits
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FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Donors see endpoint
• Donated drug/safe efficacious/popular  with 

communities
• Eliminable in isolated foci
• Disease of poor rural people

“If we cannot deliver one intervention once a year how 
can we have any functional effective health system”

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Progress made
• Intervention works (prevents blindness, 

alleviate itching/skin disease)
• Research has had proven impact in ensuring 

cost effective control and appropriate change 
in strategies.

 

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• Compliance in communities could 
reduce as symptoms recede hence 
elimination goal threatened

• Donor fatigue

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• More information on impact of ivermectin   (including 
frequency of distribution) on transmission in different 
settings

1) Extend and develop modeling using available data in 
both geographical area.  Models should take account of 
lack of isolation of endemic communities; 
complementary and comparative studies between 
different models should be undertaken

2) Based on most current data and modeling predictions, it 
is recommended that programs aim for the interruption 
of transmission using all available interventions  in 
isolated foci, which includes most if not all the Americas, 
and possibly Yemen and some sites in Africa.

 

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

4) Need to develop and test drug delivery strategies 
that will ensure and sustain high levels of coverage 
in the many and varied sociological, cultural and 
epidemiological settings where oncho is endemic.

5) Need research [field based and mathematical 
modeling] leading to a better understanding of very 
low levels of l3 transmission on sustaining an 
authchonous transmission cycle [endemicity].

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

6) There is a need for R & D to optimize impact of an 
intervention which is “marginal technology” (Group 
4) “ However Group 1 endorses a need for 
diagnostic, chemotherapeutic and 
immunoprophylaxis research

• Health system and operational research will continue to be 
required to optimize interventions

• Biological significance of low level transmission
• Drug delivery strategies
• Loa Loa issues
• Potential resistance to invermectin
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FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

7) Cost benefit of interventions are required and these 
studies should be linked to models.

8) Research agenda should include research on:
• New strategies
• Integration of oncho programs into the health structures 

and link with other disease control programs
• New funding strategies
• Implementation and program management

                          

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

9) Review and strengthen new partnerships( to 
enhance communication, collaborations, share 
knowledge, accelerate application of effective 
interventions) that bring together:

• Programs in all geographic areas
• Researchers
• Donors
• NGOs
• Corporations/Pharmaceutical manufactures
• Governmental agencies

 

FEASIBILITY OF ERADICATION WITH 
IVERMECTIN

• The group adhered to the definition of 
eradication as a global concept.

• The answer to the simple question: 

-No.
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Working Group #2:
Presented by MN Katabarwa 
 
 

• Drug Delivery
o Good forecasting and communicating needs for 

drugs early enough to allow manufacturing 
packaging and shipping within good time

o Accuracy of documentation
o Governments should take responsibility for 

cleaning and exempting drugs from taxes
o Merck & Co. reaffirmed commitment to supply 

ivermectin as required and as long as necessary

                                

• Through commitment of resources 
necessary for eradication/elimination of 
onchocerciasis
o WHO and UNICEF offices could be used to 

enhance momentum for advocacy at the 
highest level of governments

o Quantitative indices for country 
performance could encourage competition 
and advocacy for political commitment

 

• There is need to share experience across 
programs and countries/regions

• Need for flexibility depending on situation
• Objective should be attained at a high 

coverage of at least 85% of UTG and 
sustained

• Continued health education tailored to 
existing knowledge in the communities should 
be encouraged.  This should be achieved 
through research

                                

• LF/Oncho areas where 
ivermectin/albendazole are distributed 
and that are hypoendemic need to be 
monitored as a natural experiment in 
order to see the outcomes

• This will include hypoendemic areas in 
OCP that are being subjected to 
ivermectin

 

• Strengthen the health system at the periphery 
levels in order to improve its function

• CDT in Africa should be recommended to the 
nations involved as a complimentary system 
for strengthening health care delivery at the 
periphery

• Promote data-driven interventions as they will 
ensure better coverage and sustainability

                                

• There is need to encourage 
communities to get involved in self-
monitoring of their programs and 
providing feedback to the rest of their 
members and other relevant partners
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• Need to strengthen partnerships
• More partners are needed (both local 

and international)
• Partnerships are critical for planning, 

decision-making, joint advocacy and 
resource mobilization

• There is need to minimize unhealthy 
competition between partners

                                

• Strengthen capacity at different levels 
for IEC

• Need for production of appropriate IEC 
materials

 

• Aggressive advocacy for ceasefires in order to allow 
program activities to take place

• Use health to promote peace
• Allow for flexibility in implementation strategies of 

programs
• Highlight the importance of areas locked in conflict 

zones as reservoirs for infection
• Be sensitive to the needs of people in conflict areas
• Advocate for annual weeklong ceasefire for 

immunization and other disease control

                                

• Need for better knowledge of the complete 
cost of the project/program incurred by all 
partners in order to sustain control or 
eradication of onchocerciasis

• Need to know areas where cost will be 
incurred by each country and region for 
planning and advocacy

• Need to know the cost to be borne by 
individual countries and what would be 
required for eradication

 

• Investigate seasonality of drug distribution where 
maximum benefits pertaining to interruption of 
transmission can be achieved

• Develop better strategies for marketing CDT in health 
delivery systems

• Investigate the frequency of distribution to obtain 
maximum benefits/effectiveness in respect to 
cost/operational difficulties and coverage related to 
eradication

• Studies/monitoring needed in areas where coverage 
is low

                                

• In OEPA areas, there is need for 
identifying better strategies for 
ivermectin delivery which should include 
cost per capita by individual countries 
and at regional level

• There is need for capacity building for 
operational research at program level
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Working Group #3:
Presented by W Grant 
 
 

• Surveillance is in place in all current 
programs but there may be a need to 
strengthen the existing procedures

• Surveillance will differ qualitatively & 
quantitatively between control & eradication.  
Major differences are frequency, depth and 
duration.

• Monitoring period divided into pre-treatment, 
treatment, [pre-certification & certification].  
Our discussion was mainly on pre-treatment 
and treatment phases

                     

• Some attempt to differentiate between Africa 
(OCP and APOC) and Americas but no input 
from OEPA and discussion tended to be more 
general

• Additional resources are required, especially 
if the goal is eradication

• Our conclusions are largely similar to Sept. 
2000 but with some significant differences, 
particularly on the scale of monitoring 
required and the explicit inclusion of IVM-
resistance as a factor

 

• At all levels, new models should be 
considered based on new modelling 
tools (e.g. BSE and FMD

• Report divided into operational 
(process/program), infection and 
disease and resistance monitoring

                     

• Need to establish systematic exchange 
of data/experience/methodology 
between OEPA, OCP & APOC to 
highlight similarities and differences

• Accurate data on geographic and 
demographic coverage are essential

• Migration a major problem: do existing 
procedures incorporate migration?

 

• Validation of records/databases: regular 
random audits of individual/village records 
and of links between village to district to 
region, etc.

• Village records to include any examples of 
systematic or repeated non-compliance

• Maintenance & sustainability of databases: 
motivation & morale of personnel, provision of 
equipment (e.g. computers) and training

• Models need to include coverage data

                     

• Pre-treatment
o Elimination in Africa will require treatment of 

hypoendemic areas: are the current pre-
intervention data adequate?

o Particular concern about the entomological data.  
Are they adequate to permit estimation of ATP, 
f.o.i., L3/fly, L3 prevalence, vector species 
composition, etc.?  These are required for 
accurate baselines to be established against 
which intervention can be measured (especially 
for eradication)

o OCP has the most comprehensive data.  How 
available is this?  
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• Pre-treatment (continued)
o Is meta analysis of all entomological data 

feasible?
o For eradication, the key estimate is the L3/fly or 

prevalence that is the minimum replacement 
requirement for the worm population.  Can this be 
calculated?

o What, if any, new entomological data are 
required?  For example, PCR gives prevalence 
but dissection gives intensity.  How equivalent are 
these?

                     

• Pre-treatment (continued)
o In the context of PCR, fly collection is the 

limiting step.  Can this be improved?  
Artificial traps vs. human baits.

o How widespread are novel Onchocerca 
genotypes that cannot be typed with 
existing probes (Democratic Republic of 
Congo)?

 

• Treatment
o Large-scale monitoring essential, especially for 

eradication
o DEC patch a qualified, preferred option from 

existing tools but with caveats
o Major disadvantages of patch are that it measures 

transmission events that occurred >2 years 
previously and it requires time from application to 
readout

o Entomological monitoring measures transmission 
potential in real time but not actual transmission

                     

• Treatment
o Development of a pre-patent period assay 

is desirable.  Could the antibody test fill this 
niche?  A test based on Wolbachia?

o Is the skin snip really dead?  Limited 
application to provide quantitative data at 
sentinel or problem sites?

o Development for macrofilarial assay

 

• Treatment
o Suggest a two-tiered system of monitoring

• Patch & entomological (antibody) on a wide scale
• Skin snip/nodulectomy on a small scale and in problem 

areas

o On what basis will the criteria for transmission 
interruption and eradication be set?  Geographic 
range and coverage depth of monitoring plus 
parasitological threshold

                     

• Resistance monitoring is essential but it is not 
included in any current program.  Additional 
resources are required

• No definitive criteria for resistance validation
• No means to validate resistance detection 

tool(s)
• Resistance modeling essential to help 

establish a conceptual framework
• Need to collect parasitological material widely 

to establish a pre-IVM baseline
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• Resistance monitoring via control failure 
(patch/entomo) will require more 
intensive monitoring followed by 
detailed evaluation of apparent failures.  
Coverage data critical.

• Genotypic resistance assay desirable.  
Problem with validation criteria

                     

• Incorporate PCR-assay into routine 
entomological monitoring or against skin-snip 
mf in suspected resistance foci

• Resistance could be contained if detected 
early because there are alternatives: 
localized vector control, antibiotics, 
nodulectomy, DEC in low doses, high IVM or 
MOX

• EARLY DETECTION BEFORE 
DISSEMINATION IS KEY
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Working Group #4:
Presented by SEO Meredith 
 
 

                   

Introduction - 1

• In order to protect the enormous investment made in 
onchocerciasis control and to insure continued success, 
significant funding for research and development is critical. 

• The question remains, “Is onchocerciasis eradicable with the 
tools currently available? 

• If the definition of eradicable is global, then no. However if 
elimination at regional /country level is considered:
– For Africa, the simple answer is no
– For Latin America, the answer is possibly

• Can the current approaches contain the problem of 
onchocerciasis and protect the existing health gains provided by
the work of OCP/APOC/OEPA?
– Again, the answer is probably not.

 

Introduction - 2

• It was noted that a relatively small proportion of the 
funds for OCP/APOC/OEPA were allocated to non-
operational research, but that many of the existing 
tools relied on for onchocericiasis control were 
provided by basic research. 

• Thus, there was a strong consensus that support of 
any eradication or elimination campaign would 
require extensive support of fundamental research 
not only on product development – be they drugs, 
vaccines, diagnostics or mechanisms of drug 
resistance – but also on the basic biology 

and related filarial nematodes. 
• For any program, ~ 20% of budget should be 

dedicated to research and development.

                   

Drug Development - Macrofilaricidal or static drugs

• Without additional drugs, it was felt that 
elimination will not be possible in Africa.  
Thus, there was a clear argument for the 
identification of an additional drug(s) that 
would target adult parasites;

• In addition, a drug that could be used as a
microfilaricide in the event of ivermectin-
resistance must also be considered. 

 

Drug Development - Macrofilaricidal or static 
drugs

• Given the emerging approaches to drug 
discovery - including high throughput screens 
and the use of genomic data to identify 
rational targets – new candidates can now be 
identified more rapidly.   

• Because veterinary screens require
anthelmintics with broad specificities, putting

through industrial 
veterinary screens would be a cost effective 
way to identify specific compounds. 

                   

Drug Development - Macrofilaricidal or static drugs
Recommendations -1

• Directed funding is needed for pharmacological research  
- a task force involved in reviewing specific requests for 
proposals could be one approach.

• For drugs (or drug combinations) targeting the
Wolbachia, screens [ e.g.insect cell lines] and/or 

model could be used prior to human trials. 
Early human trials with already registered drugs might 
also be carried out.

• Clinical trials to define regimens that would be both
macrofilaricidal or –static and feasible for use in .

-endemic areas should be implemented as soon 
as possible.
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Drug Development - Macrofilaricidal or static drugs
Recommendations -2

• Explore with pharmaceutical companies the possibility 
of including filarial species in their veterinary screens 
[as they regularly discard helminth-specific 
compounds].

• Assess carefully the data on moxidectin with respect to 
its macrofilaricidal and macrofilaristatic activity, safety 
profile, and pharmocokinetics in humans. 

                   

• Progress on the diagnostic front has been formidable, 
although an antigen detection system for 
onchocerciasis diagnosis has not been feasible using 
currently available technologies. 

• The only operational and available tool to support 
elimination/eradication is a PCR-based assessment 
of transmission using pools of black flies.
– These methods have been standardized and there 

has been statistical validation of the methods
– quality control methodologies have been put into 

place, and regional, centralized laboratories have 
established to provide the laboratory support for 
field collected samples.  

 

• What is needed are monitoring tools 
– for assessing the presence of viable adult worms 

in the absence of microfilariae 
– the early detection of new infections in humans to 

be used during eradication programs.  
• Neither skin snips, PCR for microfilarial DNA 

(using skin snips or scrapings), nor the DEC 
patch test was felt to be sufficiently sensitive 
or field applicable to be considered ideal for 
detection of early (and prepatent) infections.

                   

• Support the development of antibody based 
tests for use as a monitoring tool.  Rapid 
assessment formats are ‘user friendly’, have 
the ability to provide instant feedback, good 
advocacy tool, proven efficacy in other control 
programs.

• Support the development of sensitive tests for 
viable adult worms [e.g. stage-specific 
antigen/antibody tests]. 

 

• There are currently no tools available to 
monitor for resistance nor is there a workable 
definition of it for
infection. 

• Although there are theoretical reasons why 
ivermectin resistance might not get fixed in 
the population, the veterinary data would 
suggest that resistance at some level will 
likely occur. 

                   

Resistance monitoring

• There were 2 questions addressed: 

– How does one monitor for resistance; and

– What would be the strategy if resistance 
were found?   
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• Develop working definitions for “non-
responders’ and resistance

• Need to examine “non-responders” from 
different countries in a standardized fashion.

• Need to have surveillance and monitoring 
strategies in place if resistance is detected.

• Strategies for containment must be 
developed before resistance is detected.

                   

Vaccines

• Progress in vaccine development against larval 
stages of has been great.
– Small and large animal screening is in place

• and 15 potential vaccine candidates have been 
identified with 8 having shown some promise in 
an cattle model under intense 
transmission. 

• There was a some consensus that vaccines inducing 
even partial immunity against either the larval stages 
or the microfilariae could be an important adjunct 
toward elimination of .

 

Vaccines

• Building upon the infrastructure already in 
place ( genome project, 
stage-specific gene identification, large and 
small animal models) additional vaccine 
targets could easily be identified.  Newer 
techniques such as RNAi could be utilized in 
proof of principle target identification.

                   

Vaccine - recommendations

• Vaccine development for L3, L4 and
microfilarial stages should be supported 
– acknowledging the that testing of microfilarial

stage-directed vaccines would be the most easily 
assessed for efficacy in humans

• Fund a field center for model for 
testing vaccines and drug development

 

Other recommendations

• A ‘curated’ database of all available data from 
the OCP, APOC and OEPA programs that 
could be accessed widely and used for 
models, etc. should be set up.

• It is important to support and maintain a 
regional clinical trial center
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